import os os.system("pip install --upgrade transformers accelerate") os.system("pip install tokenizers fairseq") os.system("pip install numpy==1.24") #NumPy 1.24 or less needed by Numba os.system("pip install torch transformers accelerate torchaudio datasets") os.system("pip install librosa==0.9.0") # os.system("pip install gradio==4.16.0") # Rollback to pre 4.17.0 due to gr Audio playback issues os.system("pip install --upgrade gradio") import scipy import gradio as gr from transformers import pipeline, Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer from datasets import load_dataset, Audio, Dataset import torch import librosa #For converting audio sample rate to 16k LANG = "dtp" #Change to tih for Timugon Murut or iba for Iban model_id = "facebook/mms-1b-all" processor = AutoProcessor.from_pretrained(model_id) model = Wav2Vec2ForCTC.from_pretrained(model_id).to("cpu") processor.tokenizer.set_target_lang(LANG) model.load_adapter(LANG) asr_pipeline = pipeline(task = "automatic-speech-recognition", model = model_id) #Function that returns a dict, transcription stored in item with key "text" model_tts = VitsModel.from_pretrained("facebook/mms-tts-dtp") tokenizer_tts = AutoTokenizer.from_pretrained("facebook/mms-tts-dtp") def preprocess(input): #Sets recording sampling rate to 16k and returns numpy ndarray from audio speech, sample_rate = librosa.load(input) speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000) loaded_audio = Dataset.from_dict({"audio": [input]}).cast_column("audio", Audio(sampling_rate=16000)) audio_to_array = loaded_audio[0]["audio"]["array"] return audio_to_array def run(input): inputs = processor(input, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) return transcription def transcribe(input): #Gradio UI wrapper function audioarray = preprocess(input) #Call preprocessor function out = run(audioarray) return out with gr.Blocks(theme = gr.themes.Soft()) as demo: gr.HTML( """

Ponutun Tuturan om Pomorolou Sinuat Boros Dusun

Poomitanan kopogunaan do somit tutun tuturan om pomorolou sinuat (speech recognition and text-to-speech models) pinoluda' di Woyotanud Tuturan Gumukabang Tagayo di Meta (Meta Massive Multilingual Speech Project)
Guguno (app) diti winonsoi di Ander © 2023-2024 id Universiti Teknologi PETRONAS
""") def tts_run(input): tokenized_input = tokenizer_tts(input, return_tensors="pt") with torch.no_grad(): output = model_tts(**tokenized_input).waveform gradio_tuple = (16000, output[0].detach().cpu().numpy()) return gradio_tuple with gr.Row(): with gr.Column(scale = 1): gr.HTML("""

""") gr.Markdown(""" **Huminodun, nulai di somit pongulai kikito DALL-E** *Huminodun, generated by the image generation model DALL-E* """) with gr.Column(scale = 4): with gr.Tab("Rolou kumaa ginarit"): input_audio = gr.Audio(sources = ["microphone"], type = "filepath", label = "Gakamai rolou nu", format = "wav") output_text = gr.components.Textbox(label = "Dalinsuat") button1 = gr.Button("Dalinsuato' | Transcribe") button1.click(transcribe, inputs = input_audio, outputs = output_text) with gr.Tab("Ginarit kumaa rolou"): input_text = gr.components.Textbox(label = "Ginarit", placeholder = "Popupukai suat nu hiti") button2 = gr.Button("Poulayo'") output_audio = gr.Audio(label = "Rolou pinoulai") button2.click(tts_run, inputs = input_text, outputs = output_audio) demo.launch(debug = True)