Spaces:
Running
Running
File size: 4,625 Bytes
0cea3a7 2854844 0eeec49 449112a 2854844 8a04c2b f524090 2abf6fe b1508bf 2854844 0cea3a7 431e989 0cea3a7 9cff099 0cea3a7 cac0a2c 0cea3a7 040ebdb 0cea3a7 431e989 0cea3a7 040ebdb 0cea3a7 040ebdb 0cea3a7 9cff099 cac0a2c 433efc6 cac0a2c 9cff099 431e989 32a72a1 0769ed0 431e989 32a72a1 2854844 431e989 9cff099 9c0b499 9cff099 f649f40 67d3502 9cff099 67d3502 9cff099 449112a 9cff099 499b1df 431e989 9cff099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import os
os.system("pip install --upgrade transformers accelerate")
os.system("pip install tokenizers fairseq")
os.system("pip install numpy==1.24") #NumPy 1.24 or less needed by Numba
os.system("pip install torch transformers accelerate torchaudio datasets")
os.system("pip install librosa==0.9.0")
# os.system("pip install gradio==4.16.0") # Rollback to pre 4.17.0 due to gr Audio playback issues
os.system("pip install --upgrade gradio")
import scipy
import gradio as gr
from transformers import pipeline, Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
from datasets import load_dataset, Audio, Dataset
import torch
import librosa #For converting audio sample rate to 16k
LANG = "dtp" #Change to tih for Timugon Murut or iba for Iban
model_id = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id).to("cpu")
processor.tokenizer.set_target_lang(LANG)
model.load_adapter(LANG)
asr_pipeline = pipeline(task = "automatic-speech-recognition", model = model_id) #Function that returns a dict, transcription stored in item with key "text"
model_tts = VitsModel.from_pretrained("facebook/mms-tts-dtp")
tokenizer_tts = AutoTokenizer.from_pretrained("facebook/mms-tts-dtp")
def preprocess(input): #Sets recording sampling rate to 16k and returns numpy ndarray from audio
speech, sample_rate = librosa.load(input)
speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000)
loaded_audio = Dataset.from_dict({"audio": [input]}).cast_column("audio", Audio(sampling_rate=16000))
audio_to_array = loaded_audio[0]["audio"]["array"]
return audio_to_array
def run(input):
inputs = processor(input, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
return transcription
def transcribe(input): #Gradio UI wrapper function
audioarray = preprocess(input) #Call preprocessor function
out = run(audioarray)
return out
with gr.Blocks(theme = gr.themes.Soft()) as demo:
gr.HTML(
"""
<h1 align="center">Ponutun Tuturan om Pomorolou Sinuat Boros Dusun</h1>
<h5 align="center"> Poomitanan kopogunaan do somit tutun tuturan om pomorolou sinuat (speech recognition and text-to-speech models)
pinoluda' di Woyotanud Tuturan Gumukabang Tagayo di Meta (Meta Massive Multilingual Speech Project)</h5>
<h6 align = "center">Guguno (app) diti winonsoi di Ander © 2023-2024 id Universiti Teknologi PETRONAS</h6>
<div style='display:flex; gap: 0.25rem; '>
<div class = "image"> <a href='https://github.com/andergisomon/dtp-nlp-demo'><img src='https://img.shields.io/badge/Github-Code-success'></a> </div>
<div class = "image"> <a href='https://huggingface.co./spaces/anderbogia/dtp-asr-demo-v2/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> </div>
</div>
""")
def tts_run(input):
tokenized_input = tokenizer_tts(input, return_tensors="pt")
with torch.no_grad():
output = model_tts(**tokenized_input).waveform
gradio_tuple = (16000, output[0].detach().cpu().numpy())
return gradio_tuple
with gr.Row():
with gr.Column(scale = 1):
gr.HTML("""<h1 align="center"><img src="https://user-images.githubusercontent.com/120112847/249789954-8dbadc59-4f39-48fa-a97c-a70998f2c551.png", alt="" border="0" style="margin: 0 auto; height: 200px;" /></a></h1>""")
gr.Markdown("""
**Huminodun, nulai di somit pongulai kikito DALL-E**
*Huminodun, generated by the image generation model DALL-E*
""")
with gr.Column(scale = 4):
with gr.Tab("Rolou kumaa ginarit"):
input_audio = gr.Audio(sources = ["microphone"], type = "filepath", label = "Gakamai rolou nu", format = "wav")
output_text = gr.components.Textbox(label = "Dalinsuat")
button1 = gr.Button("Dalinsuato' | Transcribe")
button1.click(transcribe, inputs = input_audio, outputs = output_text)
with gr.Tab("Ginarit kumaa rolou"):
input_text = gr.components.Textbox(label = "Ginarit", placeholder = "Popupukai suat nu hiti")
button2 = gr.Button("Poulayo'")
output_audio = gr.Audio(label = "Rolou pinoulai")
button2.click(tts_run, inputs = input_text, outputs = output_audio)
demo.launch(debug = True) |