File size: 22,346 Bytes
ee0ec3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
#!/usr/bin/env python3
# This file is part of UDPipe 2.0 <http://github.com/ufal/udpipe>.
#
# Copyright 2020 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University in Prague, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import argparse
import contextlib
import email.parser
import http.server
import itertools
import json
import os
import socketserver
import sys
import threading
import time
import unicodedata
import urllib.parse
import udpipe2
import udpipe2_dataset
import ufal.udpipe
import wembedding_service.wembeddings.wembeddings as wembeddings
__version__ = "2.1.1-dev"
class TooLongError(Exception):
pass
class Models:
class Model:
class Network:
_mutex = threading.Lock()
def __init__(self, path, server_args):
self._path = path
self._server_args = server_args
self.network, self.args, self.train = None, None, None
def load(self):
if self.network is not None:
return
with self._mutex:
if self.network is not None:
return
with open(os.path.join(self._path, "options.json"), mode="r") as options_file:
self.args = argparse.Namespace(**json.load(options_file))
udpipe2.UDPipe2.postprocess_arguments(self.args)
self.args.batch_size = self._server_args.batch_size
self.train = udpipe2_dataset.UDPipe2Dataset.load_mappings(os.path.join(self._path, "mappings.pickle"))
self.network = udpipe2.UDPipe2(threads=self._server_args.threads)
self.network.construct(self.args, self.train, [], [], predict_only=True)
self.network.load(self._path, self.args.morphodita)
print("Loaded model {}".format(os.path.basename(self._path)), file=sys.stderr, flush=True)
def __init__(self, names, path, network, variant, acknowledgements, server_args):
self.names = names
self.acknowledgements = acknowledgements
self._network = network
self._variant = variant
self._server_args = server_args
# Load the tokenizer
tokenizer_path = os.path.join(path, "{}.tokenizer".format(variant))
self._tokenizer = ufal.udpipe.Model.load(tokenizer_path)
if self._tokenizer is None:
raise RuntimeError("Cannot load tokenizer from {}".format(tokenizer_path))
self._conllu_input = ufal.udpipe.InputFormat.newConlluInputFormat()
if self._conllu_input is None:
raise RuntimeError("Cannot create CoNLL-U input format")
self._conllu_output = ufal.udpipe.OutputFormat.newConlluOutputFormat()
if self._conllu_output is None:
raise RuntimeError("Cannot create CoNLL-U output format")
# Load the network if requested
if names[0] in server_args.preload_models or "all" in server_args.preload_models:
self._network.load()
def read(self, text, input_format):
reader = ufal.udpipe.InputFormat.newInputFormat(input_format)
if reader is None:
raise RuntimeError("Unknown input format '{}'".format(input_format))
# Do not return a generator, but a list to raise exceptions early
return list(self._read(text, reader))
def tokenize(self, text, tokenizer_options):
tokenizer = self._tokenizer.newTokenizer(tokenizer_options)
if tokenizer is None:
raise RuntimeError("Cannot create tokenizer.")
# Do not return a generator, but a list to raise exceptions early
return list(self._read(text, tokenizer))
def _read(self, text, reader):
sentence = ufal.udpipe.Sentence()
processing_error = ufal.udpipe.ProcessingError()
reader.setText(text)
while reader.nextSentence(sentence, processing_error):
if len(sentence.words) > 1001:
raise TooLongError()
yield sentence
sentence = ufal.udpipe.Sentence()
if processing_error.occurred():
raise RuntimeError("Cannot read input data: '{}'".format(processing_error.message))
def create_writer(self, output_format):
writer = ufal.udpipe.OutputFormat.newOutputFormat(output_format)
if writer is None:
raise RuntimeError("Unknown output format '{}'".format(output_format))
return writer
def predict(self, sentences, tag, parse, writer):
# Run the model
if tag or parse:
# Load the network if it has not been loaded already
self._network.load()
wembedding_input, conllu_input = [], []
for sentence in sentences:
wembedding_input.append([word.form for word in sentence.words[1:]])
conllu_input.append(self._conllu_output.writeSentence(sentence))
time_wes = time.time()
# Compute the WEmbeddings
with self._server_args.optional_semaphore:
time_we = time.time()
if self._network.args.wembedding_model:
wembeddings = self._server_args.wembedding_server.compute_embeddings(self._network.args.wembedding_model, wembedding_input)
else:
wembeddings = []
time_ds = time.time()
# Create UDPipe2Dataset
dataset = udpipe2_dataset.UDPipe2Dataset(text="".join(conllu_input), train=self._network.train, shuffle_batches=False,
embeddings=wembeddings, override_variant=self._variant)
# Prepare network arguments
network_args = argparse.Namespace(**vars(self._network.args))
if not tag: network_args.tags = []
if not parse: network_args.parse = 0
# Perform the prediction
time_nws = time.time()
with self._server_args.optional_semaphore:
time_nw = time.time()
predicted = self._network.network.predict(dataset, evaluating=False, args=network_args)
time_rd = time.time()
# Load the predicted CoNLL-U to ufal.udpipe sentences
sentences = self._read(predicted, self._conllu_input)
print("Request, WE {:.2f}+{:.2f}ms,".format(1000 * (time_ds - time_we), 1000 * (time_we - time_wes)),
"DS {:.2f}ms,".format(1000 * (time_nws - time_ds)),
"NW {:.2f}+{:.2f}ms,".format(1000 * (time_rd - time_nw), 1000 * (time_nw - time_nws)),
"RD {:.2f}ms.".format(1000 * (time.time() - time_rd)),
file=sys.stderr, flush=True)
# Generate output
output = []
for sentence in sentences:
output.append(writer.writeSentence(sentence))
output.append(writer.finishDocument())
return "".join(output)
def __init__(self, server_args):
self.default_model = server_args.default_model
self.models_list = []
self.models_by_names = {}
networks_by_path = {}
for i in range(0, len(server_args.models), 4):
names, path, variant, acknowledgements = server_args.models[i:i+4]
names = names.split(":")
names = [name.split("-") for name in names]
names = ["-".join(parts[:None if not i else -i]) for parts in names for i in range(len(parts))]
if not path in networks_by_path:
networks_by_path[path] = self.Model.Network(path, server_args)
self.models_list.append(self.Model(names, path, networks_by_path[path], variant, acknowledgements, server_args))
for name in names:
self.models_by_names.setdefault(name, self.models_list[-1])
# Check the default model exists
assert self.default_model in self.models_by_names
class UDServer(socketserver.ThreadingTCPServer):
class UDServerRequestHandler(http.server.BaseHTTPRequestHandler):
protocol_version = "HTTP/1.1"
def respond(request, content_type, code=200, additional_headers={}):
request.close_connection = True
request.send_response(code)
request.send_header("Connection", "close")
request.send_header("Content-Type", content_type)
request.send_header("Access-Control-Allow-Origin", "*")
for key, value in additional_headers.items():
request.send_header(key, value)
request.end_headers()
def respond_error(request, message, code=400):
request.respond("text/plain", code)
request.wfile.write(message.encode("utf-8"))
def do_GET(request):
# Parse the URL
params = {}
try:
request.path = request.path.encode("iso-8859-1").decode("utf-8")
url = urllib.parse.urlparse(request.path)
for name, value in urllib.parse.parse_qsl(url.query, encoding="utf-8", keep_blank_values=True, errors="strict"):
params[name] = value
except:
return request.respond_error("Cannot parse request URL.")
# Parse the body of a POST request
if request.command == "POST":
if request.headers.get("Transfer-Encoding", "identity").lower() != "identity":
return request.respond_error("Only 'identity' Transfer-Encoding of payload is supported for now.")
try:
content_length = int(request.headers["Content-Length"])
except:
return request.respond_error("The Content-Length of payload is required.")
if content_length > request.server._server_args.max_request_size:
return request.respond_error("The payload size is too large.")
# Raw text on input for weblicht
if url.path.startswith("/weblicht/"):
# Ignore all but `model` GET param
params = {"model": params["model"]} if "model" in params else {}
try:
params["data"] = request.rfile.read(content_length).decode("utf-8")
except:
return request.respond_error("The payload is not in UTF-8 encoding.")
if url.path == "/weblicht/tokenize": params["tokenizer"] = ""
else: params["input"] = "conllu"
params["output"] = "conllu"
if url.path == "/weblicht/tag": params["tagger"] = ""
if url.path == "/weblicht/parse": params["parser"] = ""
# multipart/form-data
elif request.headers.get("Content-Type", "").startswith("multipart/form-data"):
try:
parser = email.parser.BytesFeedParser()
parser.feed(b"Content-Type: " + request.headers["Content-Type"].encode("ascii") + b"\r\n\r\n")
while content_length:
parser.feed(request.rfile.read(min(content_length, 4096)))
content_length -= min(content_length, 4096)
for part in parser.close().get_payload():
name = part.get_param("name", header="Content-Disposition")
if name:
params[name] = part.get_payload(decode=True).decode("utf-8")
except:
return request.respond_error("Cannot parse the multipart/form-data payload.")
# application/x-www-form-urlencoded
elif request.headers.get("Content-Type", "").startswith("application/x-www-form-urlencoded"):
try:
for name, value in urllib.parse.parse_qsl(
request.rfile.read(content_length).decode("utf-8"), encoding="utf-8", keep_blank_values=True, errors="strict"):
params[name] = value
except:
return request.respond_error("Cannot parse the application/x-www-form-urlencoded payload.")
else:
return request.respond_error("Unsupported payload Content-Type '{}'.".format(request.headers.get("Content-Type", "<none>")))
# Handle /models
if url.path == "/models":
response = {
"models": {model.names[0]: ["tokenizer", "tagger", "parser"] for model in request.server._models.models_list},
"default_model": request.server._models.default_model,
}
request.respond("application/json")
request.wfile.write(json.dumps(response, indent=1).encode("utf-8"))
# Handle /process
elif url.path in ["/process", "/weblicht/tokenize", "/weblicht/tag", "/weblicht/parse"]:
weblicht = url.path.startswith("/weblicht")
if "data" not in params:
return request.respond_error("The parameter 'data' is required.")
params["data"] = unicodedata.normalize("NFC", params["data"])
model = params.get("model", request.server._models.default_model)
if model not in request.server._models.models_by_names:
return request.respond_error("The requested model '{}' does not exist.".format(model))
model = request.server._models.models_by_names[model]
# Start by reading and optionally tokenizing the input data.
if "tokenizer" in params:
try:
sentences = model.tokenize(params["data"], params["tokenizer"])
except TooLongError:
return request.respond_error("During tokenization, sentence longer than 1000 words was found, aborting.\nThat should only happen with presegmented input.\nPlease make sure you do not generate such long sentences.\n")
except:
return request.respond_error("An error occured during tokenization of the input.")
else:
try:
sentences = model.read(params["data"], params.get("input", "conllu"))
except TooLongError:
return request.respond_error("Sentence longer than 1000 words was found on input, aborting.\nPlease make sure the input sentences have at most 1000 words.\n")
except:
return request.respond_error("Cannot parse the input in '{}' format.".format(params.get("input", "conllu")))
infclen = sum(sum(len(word.form) for word in sentence.words[1:]) for sentence in sentences)
# Create the writer
output_format = params.get("output", "conllu")
try:
writer = model.create_writer(output_format)
except:
return request.respond_error("Unknown output format '{}'.".format(output_format))
# Process the data
tag, parse, output_format = "tagger" in params, "parser" in params, params.get("output", "conllu")
batch, started_responding = [], False
try:
for sentence in itertools.chain(sentences, ["EOF"]):
if sentence == "EOF" or len(batch) == request.server._server_args.batch_size:
output = model.predict(batch, tag, parse, writer)
if not started_responding:
# The first batch is ready, we commit to generate output.
started_responding=True
if weblicht:
request.respond("application/conllu")
else:
request.respond("application/json", additional_headers={"X-Billing-Input-NFC-Len": str(infclen)})
request.wfile.write(json.dumps({
"model": model.names[0],
"acknowledgements": ["http://ufal.mff.cuni.cz/udpipe/2#udpipe2_acknowledgements", model.acknowledgements],
"result": "",
}, indent=1)[:-3].encode("utf-8"))
if output_format == "conllu":
request.wfile.write(json.dumps(
"# generator = UDPipe 2, https://lindat.mff.cuni.cz/services/udpipe\n"
"# udpipe_model = {}\n"
"# udpipe_model_licence = CC BY-NC-SA\n".format(model.names[0]))[1:-1].encode("utf-8"))
if weblicht:
request.wfile.write(output.encode("utf-8"))
else:
request.wfile.write(json.dumps(output, ensure_ascii=False)[1:-1].encode("utf-8"))
batch = []
batch.append(sentence)
if not weblicht:
request.wfile.write(b'"\n}\n')
except:
import traceback
traceback.print_exc(file=sys.stderr)
sys.stderr.flush()
if not started_responding:
request.respond_error("An internal error occurred during processing.")
else:
if weblicht:
request.wfile.write(b'\n\nAn internal error occurred during processing, producing incorrect CoNLL-U!')
else:
request.wfile.write(b'",\n"An internal error occurred during processing, producing incorrect JSON!"')
# Unknown URL
else:
request.respond_error("No handler for the given URL '{}'".format(url.path), code=404)
def do_POST(request):
return request.do_GET()
daemon_threads = False
def __init__(self, server_args, models):
super().__init__(("", server_args.port), self.UDServerRequestHandler)
self._server_args = server_args
self._models = models
def server_bind(self):
import socket
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
super().server_bind()
def service_actions(self):
if isinstance(getattr(self, "_threads", None), list):
if len(self._threads) >= 1024:
self._threads = [thread for thread in self._threads if thread.is_alive()]
if __name__ == "__main__":
import signal
import threading
# Parse server arguments
parser = argparse.ArgumentParser()
parser.add_argument("port", type=int, help="Port to use")
parser.add_argument("default_model", type=str, help="Default model")
parser.add_argument("models", type=str, nargs="+", help="Models to serve")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size")
parser.add_argument("--concurrent", default=None, type=int, help="Concurrent computations of NN")
parser.add_argument("--logfile", default=None, type=str, help="Log path")
parser.add_argument("--max_request_size", default=4096*1024, type=int, help="Maximum request size")
parser.add_argument("--preload_models", default=[], nargs="*", type=str, help="Models to preload, or `all`")
parser.add_argument("--threads", default=0, type=int, help="Threads to use")
parser.add_argument("--wembedding_preload_models", default=[], nargs="*", type=str, help="WEmbedding models to preload")
parser.add_argument("--wembedding_server", default=None, type=str, help="Address of an WEmbedding server")
args = parser.parse_args()
# Log stderr to logfile if given
if args.logfile is not None:
sys.stderr = open(args.logfile, "a", encoding="utf-8")
# Load the models
models = Models(args)
# Create the WEmbeddings client
if args.wembedding_server is not None:
args.wembedding_server = wembeddings.WEmbeddings.ClientNetwork(args.wembedding_server)
else:
args.wembedding_server = wembeddings.WEmbeddings(threads=args.threads, preload_models=args.wembedding_preload_models)
# Create a semaphore if needed
args.optional_semaphore = threading.Semaphore(args.concurrent) if args.concurrent is not None else contextlib.nullcontext()
# Create the server
server = UDServer(args, models)
server_thread = threading.Thread(target=server.serve_forever, daemon=True)
server_thread.start()
print("Started UDPipe 2 server on port {}.".format(args.port), file=sys.stderr)
print("To stop it gracefully, either send SIGINT (Ctrl+C) or SIGUSR1.", file=sys.stderr, flush=True)
# Wait until the server should be closed
signal.pthread_sigmask(signal.SIG_BLOCK, [signal.SIGINT, signal.SIGUSR1])
signal.sigwait([signal.SIGINT, signal.SIGUSR1])
print("Initiating shutdown of the UDPipe 2 server.", file=sys.stderr, flush=True)
server.shutdown()
print("Stopped handling new requests, processing all current ones.", file=sys.stderr, flush=True)
server.server_close()
print("Finished shutdown of the UDPipe 2 server.", file=sys.stderr, flush=True)
|