anantpinak33 commited on
Commit
6fe7b87
β€’
1 Parent(s): 5cb0486

Upload 6 files

Browse files
Files changed (6) hide show
  1. README.md +5 -5
  2. app.py +138 -0
  3. gitattributes +34 -0
  4. heart_xgb.pkl +3 -0
  5. heart_xgbV2.pkl +3 -0
  6. requirements.txt +10 -0
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: Heart Attack Predictor Class Project
3
- emoji: 🐨
4
- colorFrom: gray
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.39.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
1
  ---
2
+ title: Group Eight
3
+ emoji: πŸš€
4
+ colorFrom: indigo
5
+ colorTo: green
6
  sdk: gradio
7
+ sdk_version: 3.27.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
app.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import pandas as pd
3
+ import shap
4
+ from shap.plots._force_matplotlib import draw_additive_plot
5
+ import gradio as gr
6
+ import numpy as np
7
+ import matplotlib.pyplot as plt
8
+
9
+
10
+ theme = gr.themes.Default(primary_hue="blue").set(
11
+ background_fill_primary="#D3D3D3",
12
+ block_background_fill="#D3D3D3",
13
+ )
14
+
15
+
16
+ # load the model from disk
17
+ loaded_model = pickle.load(open("heart_xgbV2.pkl", 'rb'))
18
+
19
+ # Setup SHAP
20
+ explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
21
+
22
+ gender_dict = {"Male":0,"Female":1}
23
+ cp_dict = {"Typical Angina":0, "Atypical Angina":1, "Non-Anginal":2, "Asymptomatic":3}
24
+ fbs_dict = {"Yes":1,"No":0}
25
+ exng_dict = {"Yes":1,"No":0}
26
+ restecg_dict = {"Normal":0, "Having ST-T abnormality":1, "Showing probable or definite left ventricular hypertrophy by Estes' Criteria":2}
27
+ thall_dict = {"Fixed Defect":1, "Normal Blood Flow":2, "Reversible Defect":3}
28
+ slp_dict = {"Upsloping":1, "Flat":2, "Downsloping":3}
29
+
30
+ # Create the main function for server
31
+ def main_func(age, sex, cp, trtbps, chol, fbs, restecg,thalachh,exng,oldpeak,slp,caa,thall):
32
+ new_row = pd.DataFrame.from_dict({'age':age,'sex':gender_dict[sex],
33
+ 'cp':cp_dict[cp],'trtbps':trtbps,'chol':chol,
34
+ 'fbs':fbs_dict[fbs], 'restecg':restecg_dict[restecg], 'thalachh':thalachh, 'exng':exng_dict[exng],
35
+ 'oldpeak':oldpeak,'slp':slp_dict[slp],'caa':caa,'thall':thall_dict[thall]},
36
+ orient = 'index').transpose()
37
+
38
+ prob = loaded_model.predict_proba(new_row)
39
+
40
+ shap_values = explainer(new_row)
41
+ # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
42
+ # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
43
+ plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
44
+
45
+ plt.tight_layout()
46
+ local_plot = plt.gcf()
47
+ plt.close()
48
+
49
+ return {"Lower Chance of a Heart Attack": float(prob[0][0]), "Higher Chance of a Heart Attack": 1-float(prob[0][0])}, local_plot
50
+
51
+ # Create the UI
52
+ title = "**Heart Attack Predictor & Interpreter** πŸͺ"
53
+ description1 = "This app takes info from subjects and predicts their heart attack likelihood."
54
+
55
+ description_notmedical="**Do not use for medical diagnosis.**"
56
+
57
+
58
+ description2 = "**Fill all the options** or no result will be generated!!!**"
59
+
60
+
61
+ description3 = "To use the app, please fill all the options, and click on Analyze. 🀞"
62
+
63
+
64
+ descriptionExamples = "If you would like to see how the model works, please scroll down and try one of the examples!"
65
+
66
+
67
+ ##Pinak
68
+ with gr.Blocks(title=title, theme=theme) as demo:
69
+
70
+ gr.Markdown("<span style='color: #FF0000;font-size: 20px'> **Heart Attack Predictor & Interpreter** πŸͺ</span>")
71
+ gr.Markdown("""---""")
72
+ gr.Markdown("<span style='font-size: 20px;'> **Do not use for medical diagnosis.**")
73
+ gr.Markdown("""---""")
74
+ gr.Markdown("<span style='font-size: 16px;'> If you would like to see how the model works, please scroll down and try one of the examples!")
75
+ gr.Markdown("""---""")
76
+ gr.Markdown("<span style='font-size: 16px;'> This app takes info from subjects and predicts their heart attack likelihood.")
77
+ gr.Markdown("""---""")
78
+ gr.Markdown("<span style='font-size: 16px;'> To use the app, please fill in all the options, and click on Analyze. 🀞")
79
+ gr.Markdown("<span style='font-size: 16px;'> **Fill all the options or no result will be generated!!!**")
80
+ gr.Markdown("""---""")
81
+
82
+ with gr.Row():
83
+ with gr.Column():
84
+ age = gr.Number(label="What is your age?", value=40)
85
+ with gr.Column():
86
+ slp = gr.Dropdown(["Upsloping", "Flat", "Downsloping"], label="What was the slope of the peak exercise ST segment?")
87
+
88
+ with gr.Row():
89
+ with gr.Column():
90
+ sex = gr.Radio(["Female", "Male"], label = "What is your sex?")
91
+ cp = gr.Radio(["Typical Angina", "Atypical Angina", "Non-Anginal", "Asymptomatic"], label = "What kind of chest pain is it?")
92
+ with gr.Column():
93
+ restecg = gr.Radio(["Normal", "Having ST-T abnormality", "Showing probable or definite left ventricular hypertrophy by Estes' Criteria"],
94
+ label = "What is your resting ECG result?")
95
+
96
+ with gr.Row():
97
+ with gr.Column():
98
+ fbs = gr.Radio(["Yes", "No"], label = "Is your fasting Blood Sugar >120 mg/dl?")
99
+ with gr.Column():
100
+ exng = gr.Radio(["Yes", "No"], label = "Do you have Exercise Induced Angina?")
101
+ with gr.Row():
102
+ with gr.Column():
103
+ caa = gr.Radio([1, 2, 3], label="How many vessels were colored by the fluoroscopy?")
104
+
105
+ with gr.Column():
106
+ thall = gr.Radio(["Fixed Defect", "Normal Blood Flow", "Reversible Defect"], label="What is your Thalassemia condition?")
107
+
108
+ with gr.Row():
109
+ with gr.Column():
110
+ trtbps = gr.Slider(label = "What is your resting blood Pressure (in mm Hg)?", minimum = 10, maximum = 250, value = 100, step = 1)
111
+
112
+ with gr.Column():
113
+ chol = gr.Slider(label = "What is your cholesterol in mg/dl (via BMI sensor)?", minimum = 30, maximum = 300, value = 180, step = 1)
114
+ with gr.Row():
115
+ with gr.Column():
116
+ oldpeak = gr.Slider(label = "What was the ST depression induced by exercise relative to rest?", minimum = 0, maximum = 6.2, step = 0.1)
117
+ with gr.Column():
118
+ thalachh = gr.Slider(label="What is your maximum heart rate?", minimum = 60, maximum = 250, value=100, step = 1)
119
+
120
+
121
+ with gr.Row():
122
+ submit_btn = gr.Button("Analyze")
123
+
124
+ ##Do not need to touch
125
+ with gr.Column(visible=True) as output_col:
126
+ label = gr.Label(label = "Predicted Label")
127
+ local_plot = gr.Plot(label = 'Shap:')
128
+
129
+ submit_btn.click(
130
+ main_func,
131
+ [age, sex, cp, trtbps, chol, fbs, restecg,thalachh,exng,oldpeak,slp,caa,thall],
132
+ [label,local_plot], api_name="Heart_Predictor"
133
+ )
134
+
135
+ gr.Examples([[24, "Male", "Typical Angina", 130, 150, "Yes", "Having ST-T abnormality",170, "Yes", 5.1, "Flat", 2, "Normal Blood Flow"],
136
+ [59, "Female", "Non-Anginal", 150, 170, "No", "Showing probable or definite left ventricular hypertrophy by Estes' Criteria",190, "No", 6, "Upsloping", 3, "Reversible Defect"]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True)
137
+
138
+ demo.launch()
gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
heart_xgb.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15c0afec50d47e4a5842340d8c47b8a14be0e60f6d2bd4898974a210fd795903
3
+ size 138725
heart_xgbV2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c89450258148337aaf93e65ca5526dcabe996126869ad0c6f4f2a7d37ffb28f8
3
+ size 132944
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio==3.1.3
2
+ Pillow
3
+ yake
4
+ pandas
5
+ sklearn
6
+ shap
7
+ xgboost
8
+ matplotlib
9
+ numpy
10
+ streamlit