Spaces:
Sleeping
Sleeping
import os | |
import pickle | |
from contextlib import nullcontext | |
import torch | |
from model import GPTConfig, GPT | |
device = 'cpu' | |
max_new_tokens = 500 # number of tokens generated in each sample | |
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions | |
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability | |
ctx = nullcontext() | |
ckpt_path = 'ckpt.pt' | |
checkpoint = torch.load(ckpt_path, map_location='cpu') | |
gptconf = GPTConfig(**checkpoint['model_args']) | |
model = GPT(gptconf) | |
state_dict = checkpoint['model'] | |
unwanted_prefix = '_orig_mod.' | |
for k,v in list(state_dict.items()): | |
if k.startswith(unwanted_prefix): | |
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) | |
model.load_state_dict(state_dict) | |
model.eval() | |
model.to(device) | |
# model = torch.compile(model) # requires PyTorch 2.0 (optional) | |
print("model loaded !!") | |
meta_path = 'meta.pkl' | |
print(f"Loading meta from {meta_path}...") | |
with open(meta_path, 'rb') as f: | |
meta = pickle.load(f) | |
# TODO want to make this more general to arbitrary encoder/decoder schemes | |
stoi, itos = meta['stoi'], meta['itos'] | |
encode = lambda s: [stoi[c] for c in s] | |
decode = lambda l: ''.join([itos[i] for i in l]) | |
def run(prompt): | |
input_ids = encode(prompt) | |
input_ids = torch.tensor(input_ids, dtype=torch.long, device=device)[None, ...] | |
with torch.no_grad(): | |
with ctx: | |
y = model.generate(input_ids, max_new_tokens, temperature=temperature, top_k=top_k) | |
response = decode(y[0].tolist()) | |
return response | |