import gradio as gr import tensorflow as tf from transformers import AutoTokenizer # Load the model from huggingface_hub import hf_hub_download model_path = hf_hub_download(repo_id="anand6572r/my-keras-model11", filename="trained_model.keras") model = tf.keras.models.load_model(model_path) # Load a Hugging Face tokenizer (use a compatible model's tokenizer) tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Define preprocessing function def preprocess_input(query): """ Tokenizes and formats the input text for the model using Hugging Face's tokenizer. """ inputs = tokenizer( query, padding="max_length", max_length=100, truncation=True, return_tensors="tf", ) return inputs["input_ids"] # Define postprocessing function def postprocess_output(prediction): """ Converts model predictions into a user-friendly response. """ if prediction[0] > 0.5: # Adjust threshold if necessary return "Yes, this relates to a Wikipedia article." else: return "No, this does not relate to a Wikipedia article." # Define prediction function def predict(query): """ Predicts whether the query relates to a Wikipedia article. """ # Preprocess the input query input_data = preprocess_input(query) # Get prediction from the model prediction = model.predict(input_data) # Postprocess the prediction response = postprocess_output(prediction[0]) return response # Gradio interface interface = gr.Interface( fn=predict, inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."), outputs=gr.Textbox(label="Response"), title="Wikipedia Article Query Predictor", description="This model predicts whether a query relates to a Wikipedia article.", ) # Launch the Gradio app if __name__ == "__main__": interface.launch()