Spaces:
Running
Running
import random | |
import time | |
import logging | |
from json import JSONDecodeError | |
import streamlit as st | |
from app_utils.backend_utils import load_statements, check_statement, explain_using_llm | |
from app_utils.frontend_utils import ( | |
set_state_if_absent, | |
reset_results, | |
entailment_html_messages, | |
create_df_for_relevant_snippets, | |
create_ternary_plot, | |
build_sidebar, | |
) | |
from app_utils.config import RETRIEVER_TOP_K | |
def main(): | |
statements = load_statements() | |
build_sidebar() | |
# Persistent state | |
set_state_if_absent("statement", "Elvis Presley is alive") | |
set_state_if_absent("answer", "") | |
set_state_if_absent("results", None) | |
set_state_if_absent("raw_json", None) | |
set_state_if_absent("random_statement_requested", False) | |
st.write("# Fact Checking πΈ Rocks!") | |
st.write() | |
st.markdown( | |
""" | |
##### Enter a factual statement about [Rock music](https://en.wikipedia.org/wiki/List_of_mainstream_rock_performers) and let the AI check it out for you... | |
""" | |
) | |
# Search bar | |
statement = st.text_input( | |
"", value=st.session_state.statement, max_chars=100, on_change=reset_results | |
) | |
col1, col2 = st.columns(2) | |
col1.markdown( | |
"<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True | |
) | |
col2.markdown( | |
"<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True | |
) | |
# Run button | |
run_pressed = col1.button("Run") | |
# Random statement button | |
if col2.button("Random statement"): | |
reset_results() | |
statement = random.choice(statements) | |
# Avoid picking the same statement twice (the change is not visible on the UI) | |
while statement == st.session_state.statement: | |
statement = random.choice(statements) | |
st.session_state.statement = statement | |
st.session_state.random_statement_requested = True | |
# Re-runs the script setting the random statement as the textbox value | |
# Unfortunately necessary as the Random statement button is _below_ the textbox | |
# Adapted for Streamlit>=1.12.0 | |
if hasattr(st, "scriptrunner"): | |
raise st.scriptrunner.script_runner.RerunException( | |
st.scriptrunner.script_requests.RerunData(widget_states=None) | |
) | |
raise st.runtime.scriptrunner.script_runner.RerunException( | |
st.runtime.scriptrunner.script_requests.RerunData(widget_states=None) | |
) | |
else: | |
st.session_state.random_statement_requested = False | |
run_query = ( | |
run_pressed or statement != st.session_state.statement | |
) and not st.session_state.random_statement_requested | |
# Get results for query | |
if run_query and statement: | |
time_start = time.time() | |
reset_results() | |
st.session_state.statement = statement | |
with st.spinner("π§ Performing neural search on documents..."): | |
try: | |
st.session_state.results = check_statement(statement, RETRIEVER_TOP_K) | |
print(f"S: {statement}") | |
time_end = time.time() | |
print(time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime())) | |
print(f"elapsed time: {time_end - time_start}") | |
except JSONDecodeError as je: | |
st.error( | |
"π An error occurred reading the results. Is the document store working?" | |
) | |
return | |
except Exception as e: | |
logging.exception(e) | |
st.error("π An error occurred during the request.") | |
return | |
# Display results | |
if st.session_state.results: | |
docs = st.session_state.results["documents"] | |
agg_entailment_info = st.session_state.results["aggregate_entailment_info"] | |
# show different messages depending on entailment results | |
max_key = max(agg_entailment_info, key=agg_entailment_info.get) | |
message = entailment_html_messages[max_key] | |
st.markdown(f"<br/><h4>{message}</h4>", unsafe_allow_html=True) | |
st.markdown(f"###### Aggregate entailment information:") | |
col1, col2 = st.columns([2, 1]) | |
fig = create_ternary_plot(agg_entailment_info) | |
with col1: | |
# theme=None helps to preserve default plotly colors | |
st.plotly_chart(fig, use_container_width=True, theme=None) | |
with col2: | |
st.write(agg_entailment_info) | |
st.markdown(f"###### Most Relevant snippets:") | |
df, urls = create_df_for_relevant_snippets(docs) | |
st.dataframe(df) | |
str_wiki_pages = "Wikipedia source pages: " | |
for doc, url in urls.items(): | |
str_wiki_pages += f"[{doc}]({url}) " | |
st.markdown(str_wiki_pages) | |
if max_key != "neutral": | |
st.markdown("#### Why β *(experimental)*") | |
if st.button("Explain using a Large Language Model π€..."): | |
explanation = explain_using_llm( | |
statement=statement, | |
documents=docs, | |
entailment_or_contradiction=max_key, | |
) | |
st.markdown(explanation) | |
main() | |