Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
from app_utils import filter_dataframe, calculate_height_to_display | |
from contants import INFO_CATALOG, CITATION_CATALOG, HOWTO_CATALOG,INFO_BENCHMARK, CITATION_BENCHMARK, INFO_SURVEY, CITATION_SURVEY | |
from utils import BASE_SUMMARY_METRICS | |
from utils import load_data_catalog, load_data_taxonomy, load_bench_catalog, load_bench_taxonomy | |
from utils import datasets_count_and_size, datasets_count_and_size_standard, metadata_coverage, catalog_summary_statistics | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
st.set_page_config(layout="wide") | |
# Load PL ASR data survey data | |
# Cache the dataframe so it's only loaded once | |
df_data_cat = load_data_catalog() | |
df_data_tax = load_data_taxonomy() | |
# Filter out non available datasets | |
df_data_cat_available = df_data_cat[df_data_cat['Available online'] == 'yes'] | |
# Available and free | |
df_data_cat_available_free = df_data_cat[(df_data_cat['Available online'] == 'yes') & (df_data_cat['Price - non-commercial usage'] == 'free')] | |
# Available and paid | |
df_data_cat_available_paid = df_data_cat[(df_data_cat['Available online'] == 'yes') & (df_data_cat['Price - non-commercial usage'] != 'free')] | |
# Load PL ASR benchmarks survey data | |
df_bench_cat = load_bench_catalog() | |
df_bench_tax = load_bench_taxonomy() | |
data_cat, data_taxonomy, data_survey, bench_cat, bench_taxonomy, bench_survey = st.tabs(["PL ASR speech data **catalog**", "PL ASR speech data **survey**", "ASR speech data **taxonomy**", "PL ASR benchmarks catalog", "ASR benchmarks taxonomy", "PL ASR benchmarks survey"]) | |
with data_cat: | |
st.title("Polish ASR Speech Datasets Catalog") | |
st.markdown(INFO_CATALOG, unsafe_allow_html=True) | |
st.header("How to use?") | |
st.markdown(HOWTO_CATALOG, unsafe_allow_html=True) | |
st.header("How to cite?") | |
st.markdown(CITATION_CATALOG, unsafe_allow_html=True) | |
# Display catalog contents | |
st.header("Browse the catalog content") | |
st.dataframe(filter_dataframe(df_data_cat, "datasets"), hide_index=True, use_container_width=True) | |
# Display taxonomy contents | |
with data_survey: | |
# Display summary statistics | |
st.title("Polish ASR Speech Datasets Survey") | |
st.header("Polish ASR speech datasets summary statistics") | |
df_summary_metrics = catalog_summary_statistics(df_data_cat) | |
df_basic_stats = df_summary_metrics.loc[BASE_SUMMARY_METRICS[0:5]] | |
st.dataframe(df_basic_stats, use_container_width=False) | |
st.header("Speech data available across Polish ASR speech datasets") | |
df_stats_audio_available = df_summary_metrics.loc[BASE_SUMMARY_METRICS[5:10]] | |
st.dataframe(df_stats_audio_available, use_container_width=False) | |
st.header("Transcribed data available across Polish ASR speech datasets") | |
df_stats_transcribed_available = df_summary_metrics.loc[BASE_SUMMARY_METRICS[10:15]] | |
st.dataframe(df_stats_transcribed_available, use_container_width=False) | |
# Display distribution of datasets created per year | |
st.header("Polish ASR speech datasets created in 1997-2023") | |
col_groupby = ['Creation year'] | |
df_datasets_per_speech_type = datasets_count_and_size(df_data_cat, col_groupby, col_sort=col_groupby, col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID']) | |
st.dataframe(df_datasets_per_speech_type, use_container_width=False) | |
st.header("Institutions contributing Polish ASR speech dataset") | |
col_groupby = ['Publisher'] | |
df_datasets_per_publisher = datasets_count_and_size(df_data_cat, col_groupby, col_sort='Count Dataset ID', col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID']) | |
st.dataframe(df_datasets_per_publisher, use_container_width=False) | |
st.header("Repositories hosting Polish ASR speech datasets") | |
col_groupby = ['Repository'] | |
df_datasets_per_repo = datasets_count_and_size(df_data_cat, col_groupby, col_sort='Count Dataset ID', col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID']) | |
st.dataframe(df_datasets_per_repo, use_container_width=False) | |
st.header("Public domain Polish ASR speech datasets") | |
col_groupby = ['License', "Dataset ID"] | |
df_datasets_public = datasets_count_and_size(df_data_cat_available_free, col_groupby, col_sort='License', col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = []) | |
st.dataframe(df_datasets_public, use_container_width=False) | |
st.header("Commercialy available Polish ASR speech datasets") | |
col_groupby = ['License', "Dataset ID"] | |
df_datasets_paid = datasets_count_and_size(df_data_cat_available_paid, col_groupby, col_sort='License', col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = []) | |
st.dataframe(df_datasets_paid, use_container_width=False) | |
st.header("Coverage of metadata across Polish ASR speech datasets") | |
df_meta_all_flat, df_meta_all_pivot = metadata_coverage(df_data_cat, df_data_cat_available_free, df_data_cat_available_paid) | |
st.dataframe(df_meta_all_pivot, use_container_width=False) | |
# Display distribution of datasets for various speech types | |
st.header("Datasets per speech type") | |
col_groupby = ['Speech type'] | |
df_datasets_per_speech_type = datasets_count_and_size(df_data_cat, col_groupby, col_sort=col_groupby, col_percent = ['Size audio transcribed [hours]'], col_sum = ['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID']) | |
st.dataframe(df_datasets_per_speech_type, use_container_width=False) | |
# Display distribution of datasets for various speech types | |
st.header("Distribution of available speech data per audio device - Public domain datasets") | |
col_groupby = ['Audio device'] | |
df_datasets_per_device = datasets_count_and_size(df_data_cat_available_free, col_groupby, col_sort=col_groupby, col_percent = ['Size audio transcribed [hours]'], col_sum = ['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID']) | |
st.dataframe(df_datasets_per_device, use_container_width=False) | |
# Display distribution of datasets for various speech types | |
st.header("Distribution of available speech data per audio device - Commercial datasets") | |
col_groupby = ['Audio device'] | |
df_datasets_per_device = datasets_count_and_size(df_data_cat_available_paid, col_groupby, col_sort=col_groupby, col_percent = ['Size audio transcribed [hours]'], col_sum = ['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID']) | |
st.dataframe(df_datasets_per_device, use_container_width=False) | |
with bench_cat: | |
st.write("Benchmarks catalog") | |
# TODO - load and display benchmarks catalog | |
st.title("Polish ASR Benchmarks Catalog") | |
# Display catalog contents | |
st.dataframe(filter_dataframe(df_bench_cat, "benchmarks"), hide_index=True, use_container_width=True) | |
# Display taxonomy contents |