File size: 3,503 Bytes
d5cbb7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e283f70
d5cbb7a
 
 
 
 
 
 
 
 
e283f70
 
 
 
 
 
d5cbb7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import pandas as pd
import streamlit as st

from pandas.api.types import (
    is_categorical_dtype,
    is_datetime64_any_dtype,
    is_numeric_dtype,
    is_object_dtype,
)

def calculate_height_to_display(df):
    # Calculate the height of the DataFrame display area
    num_rows = df.shape[0]
    row_height = 25  # Estimate of row height in pixels, adjust based on your layout/theme
    header_height = 50  # Estimate of header height in pixels
    padding = 20  # Extra padding in pixels
    calculated_height = num_rows * row_height + header_height + padding

    return calculated_height

def filter_dataframe(df: pd.DataFrame, target) -> pd.DataFrame:
    """
    Adds a UI on top of a dataframe to let viewers filter columns

    Args:
        df (pd.DataFrame): Original dataframe

    Returns:
        pd.DataFrame: Filtered dataframe
    """
    if(target == "datasets"):
        modify = st.checkbox("Use filters on speech data catalog")
    elif(target == "benchmarks"):
        modify = st.checkbox("Use filters on benchmarks catalog")
    else:
        print("Invalid target")

    if not modify:
        return df

    df = df.copy()

    # Try to convert datetimes into a standard format (datetime, no timezone)
    for col in df.columns:
        if is_object_dtype(df[col]):
            try:
                df[col] = pd.to_datetime(df[col])
            except Exception:
                pass

        if is_datetime64_any_dtype(df[col]):
            df[col] = df[col].dt.tz_localize(None)

    modification_container = st.container()

    with modification_container:
        to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
        for column in to_filter_columns:
            left, right = st.columns((1, 20))
            # Treat columns with < 10 unique values as categorical
            if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
                user_cat_input = right.multiselect(
                    f"Values for {column}",
                    df[column].unique(),
                    default=list(df[column].unique()),
                )
                df = df[df[column].isin(user_cat_input)]
            elif is_numeric_dtype(df[column]):
                _min = float(df[column].min())
                _max = float(df[column].max())
                step = (_max - _min) / 100
                user_num_input = right.slider(
                    f"Values for {column}",
                    min_value=_min,
                    max_value=_max,
                    value=(_min, _max),
                    step=step,
                )
                df = df[df[column].between(*user_num_input)]
            elif is_datetime64_any_dtype(df[column]):
                user_date_input = right.date_input(
                    f"Values for {column}",
                    value=(
                        df[column].min(),
                        df[column].max(),
                    ),
                )
                if len(user_date_input) == 2:
                    user_date_input = tuple(map(pd.to_datetime, user_date_input))
                    start_date, end_date = user_date_input
                    df = df.loc[df[column].between(start_date, end_date)]
            else:
                user_text_input = right.text_input(
                    f"Substring or regex in {column}",
                )
                if user_text_input:
                    df = df[df[column].astype(str).str.contains(user_text_input)]

    return df