import torch import librosa import soundfile as sf import gradio as gr import torchaudio import os from Amphion.models.ns3_codec import FACodecEncoder, FACodecDecoder fa_encoder = FACodecEncoder( ngf=32, up_ratios=[2, 4, 5, 5], out_channels=256, ) fa_decoder = FACodecDecoder( in_channels=256, upsample_initial_channel=1024, ngf=32, up_ratios=[5, 5, 4, 2], vq_num_q_c=2, vq_num_q_p=1, vq_num_q_r=3, vq_dim=256, codebook_dim=8, codebook_size_prosody=10, codebook_size_content=10, codebook_size_residual=10, use_gr_x_timbre=True, use_gr_residual_f0=True, use_gr_residual_phone=True, ) fa_encoder.load_state_dict(torch.load("ns3_facodec_encoder.bin")) fa_decoder.load_state_dict(torch.load("ns3_facodec_decoder.bin")) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") fa_encoder = fa_encoder.to(device) fa_decoder = fa_decoder.to(device) fa_encoder.eval() fa_decoder.eval() def codec_inference(speech_path): with torch.no_grad(): wav, sr = librosa.load(speech_path, sr=16000) wav = torch.tensor(wav).to(device).unsqueeze(0).unsqueeze(0) enc_out = fa_encoder(wav) vq_post_emb, vq_id, _, quantized, spk_embs = fa_decoder( enc_out, eval_vq=False, vq=True ) recon_wav = fa_decoder.inference(vq_post_emb, spk_embs) os.makedirs("temp", exist_ok=True) result_path = "temp/result.wav" sf.write(result_path, recon_wav[0, 0].cpu().numpy(), 16000) return result_path demo_inputs = [ gr.Audio( sources=["upload", "microphone"], label="Upload the speech file", type="filepath", ), ] demo_outputs = gr.Audio(label="") demo = gr.Interface( fn=codec_inference, inputs=demo_inputs, outputs=demo_outputs, title="NaturalSpeech3 FACodec", description= """ ## FACodec: Speech Codec with Attribute Factorization used for NaturalSpeech 3 [![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/pdf/2403.03100.pdf) [![demo](https://img.shields.io/badge/FACodec-Demo-red)](https://speechresearch.github.io/naturalspeech3/) [![model](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-pink)](https://huggingface.co./amphion/naturalspeech3_facodec) ## Overview FACodec is a core component of the advanced text-to-speech (TTS) model NaturalSpeech 3. FACodec converts complex speech waveform into disentangled subspaces representing speech attributes of content, prosody, timbre, and acoustic details and reconstruct high-quality speech waveform from these attributes. FACodec decomposes complex speech into subspaces representing different attributes, thus simplifying the modeling of speech representation. Research can use FACodec to develop different modes of TTS models, such as non-autoregressive based discrete diffusion (NaturalSpeech 3) or autoregressive models (like VALL-E). """, ) if __name__ == "__main__": demo.launch()