Spaces:
Running
on
Zero
Running
on
Zero
Hecheng0625
commited on
Upload 2 files
Browse files- app.py +82 -0
- ns3_facodec_decoder.bin +3 -0
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import librosa
|
3 |
+
import soundfile as sf
|
4 |
+
import gradio as gr
|
5 |
+
import torchaudio
|
6 |
+
import os
|
7 |
+
|
8 |
+
from Amphion.models.ns3_codec import FACodecEncoder, FACodecDecoder
|
9 |
+
|
10 |
+
fa_encoder = FACodecEncoder(
|
11 |
+
ngf=32,
|
12 |
+
up_ratios=[2, 4, 5, 5],
|
13 |
+
out_channels=256,
|
14 |
+
)
|
15 |
+
|
16 |
+
fa_decoder = FACodecDecoder(
|
17 |
+
in_channels=256,
|
18 |
+
upsample_initial_channel=1024,
|
19 |
+
ngf=32,
|
20 |
+
up_ratios=[5, 5, 4, 2],
|
21 |
+
vq_num_q_c=2,
|
22 |
+
vq_num_q_p=1,
|
23 |
+
vq_num_q_r=3,
|
24 |
+
vq_dim=256,
|
25 |
+
codebook_dim=8,
|
26 |
+
codebook_size_prosody=10,
|
27 |
+
codebook_size_content=10,
|
28 |
+
codebook_size_residual=10,
|
29 |
+
use_gr_x_timbre=True,
|
30 |
+
use_gr_residual_f0=True,
|
31 |
+
use_gr_residual_phone=True,
|
32 |
+
)
|
33 |
+
|
34 |
+
fa_encoder.load_state_dict(torch.load("ns3_facodec_encoder.bin"))
|
35 |
+
fa_decoder.load_state_dict(torch.load("ns3_facodec_decoder.bin"))
|
36 |
+
|
37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
fa_encoder = fa_encoder.to(device)
|
39 |
+
fa_decoder = fa_decoder.to(device)
|
40 |
+
fa_encoder.eval()
|
41 |
+
fa_decoder.eval()
|
42 |
+
|
43 |
+
|
44 |
+
def codec_inference(speech_path):
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
|
48 |
+
wav, sr = librosa.load(speech_path, sr=16000)
|
49 |
+
wav = torch.tensor(wav).to(device).unsqueeze(0).unsqueeze(0)
|
50 |
+
|
51 |
+
enc_out = fa_encoder(wav)
|
52 |
+
vq_post_emb, vq_id, _, quantized, spk_embs = fa_decoder(
|
53 |
+
enc_out, eval_vq=False, vq=True
|
54 |
+
)
|
55 |
+
recon_wav = fa_decoder.inference(vq_post_emb, spk_embs)
|
56 |
+
|
57 |
+
os.makedirs("temp", exist_ok=True)
|
58 |
+
result_path = "temp/result.wav"
|
59 |
+
sf.write(result_path, recon_wav[0, 0].cpu().numpy(), 16000)
|
60 |
+
|
61 |
+
return result_path
|
62 |
+
|
63 |
+
|
64 |
+
demo_inputs = [
|
65 |
+
gr.Audio(
|
66 |
+
sources=["upload", "microphone"],
|
67 |
+
label="Upload the speech file",
|
68 |
+
type="filepath",
|
69 |
+
),
|
70 |
+
]
|
71 |
+
|
72 |
+
demo_outputs = gr.Audio(label="")
|
73 |
+
|
74 |
+
demo = gr.Interface(
|
75 |
+
fn=codec_inference,
|
76 |
+
inputs=demo_inputs,
|
77 |
+
outputs=demo_outputs,
|
78 |
+
title="NaturalSpeech3 FACodec",
|
79 |
+
)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
demo.launch()
|
ns3_facodec_decoder.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32bfe7d5145052b55bcc36790d12b4ff826c5e60ff197c45f37cd6c87a44a179
|
3 |
+
size 397810979
|