Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import librosa | |
import soundfile as sf | |
import gradio as gr | |
import torchaudio | |
import os | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from Amphion.models.ns3_codec import ( | |
FACodecEncoder, | |
FACodecDecoder, | |
FACodecRedecoder, | |
FACodecEncoderV2, | |
FACodecDecoderV2, | |
) | |
fa_encoder = FACodecEncoder( | |
ngf=32, | |
up_ratios=[2, 4, 5, 5], | |
out_channels=256, | |
) | |
fa_decoder = FACodecDecoder( | |
in_channels=256, | |
upsample_initial_channel=1024, | |
ngf=32, | |
up_ratios=[5, 5, 4, 2], | |
vq_num_q_c=2, | |
vq_num_q_p=1, | |
vq_num_q_r=3, | |
vq_dim=256, | |
codebook_dim=8, | |
codebook_size_prosody=10, | |
codebook_size_content=10, | |
codebook_size_residual=10, | |
use_gr_x_timbre=True, | |
use_gr_residual_f0=True, | |
use_gr_residual_phone=True, | |
) | |
fa_redecoder = FACodecRedecoder() | |
fa_encoder_v2 = FACodecEncoderV2( | |
ngf=32, | |
up_ratios=[2, 4, 5, 5], | |
out_channels=256, | |
) | |
fa_decoder_v2 = FACodecDecoderV2( | |
in_channels=256, | |
upsample_initial_channel=1024, | |
ngf=32, | |
up_ratios=[5, 5, 4, 2], | |
vq_num_q_c=2, | |
vq_num_q_p=1, | |
vq_num_q_r=3, | |
vq_dim=256, | |
codebook_dim=8, | |
codebook_size_prosody=10, | |
codebook_size_content=10, | |
codebook_size_residual=10, | |
use_gr_x_timbre=True, | |
use_gr_residual_f0=True, | |
use_gr_residual_phone=True, | |
) | |
# encoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_encoder.bin") | |
# decoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_decoder.bin") | |
# redecoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_redecoder.bin") | |
# encoder_v2_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_encoder_v2.bin") | |
# decoder_v2_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_decoder_v2.bin") | |
encoder_ckpt = "ns3_facodec_encoder.bin" | |
decoder_ckpt = "ns3_facodec_decoder.bin" | |
redecoder_ckpt = "ns3_facodec_redecoder.bin" | |
encoder_v2_ckpt = "ns3_facodec_encoder_v2.bin" | |
decoder_v2_ckpt = "ns3_facodec_decoder_v2.bin" | |
fa_encoder.load_state_dict(torch.load(encoder_ckpt)) | |
fa_decoder.load_state_dict(torch.load(decoder_ckpt)) | |
fa_redecoder.load_state_dict(torch.load(redecoder_ckpt)) | |
fa_encoder_v2.load_state_dict(torch.load(encoder_v2_ckpt)) | |
fa_decoder_v2.load_state_dict(torch.load(decoder_v2_ckpt)) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
fa_encoder = fa_encoder.to(device) | |
fa_decoder = fa_decoder.to(device) | |
fa_redecoder = fa_redecoder.to(device) | |
fa_encoder_v2 = fa_encoder_v2.to(device) | |
fa_decoder_v2 = fa_decoder_v2.to(device) | |
fa_encoder.eval() | |
fa_decoder.eval() | |
fa_redecoder.eval() | |
fa_encoder_v2.eval() | |
fa_decoder_v2.eval() | |
def codec_inference(speech_path): | |
with torch.no_grad(): | |
wav, sr = librosa.load(speech_path, sr=16000) | |
wav = torch.tensor(wav).to(device).unsqueeze(0).unsqueeze(0) | |
enc_out = fa_encoder(wav) | |
vq_post_emb, vq_id, _, quantized, spk_embs = fa_decoder( | |
enc_out, eval_vq=False, vq=True | |
) | |
recon_wav = fa_decoder.inference(vq_post_emb, spk_embs) | |
os.makedirs("temp", exist_ok=True) | |
result_path = "temp/result.wav" | |
sf.write(result_path, recon_wav[0, 0].cpu().numpy(), 16000) | |
return result_path | |
def codec_voice_conversion(speech_path_a, speech_path_b): | |
with torch.no_grad(): | |
wav_a, sr = librosa.load(speech_path_a, sr=16000) | |
wav_a = torch.tensor(wav_a).to(device).unsqueeze(0).unsqueeze(0) | |
wav_b, sr = librosa.load(speech_path_b, sr=16000) | |
wav_b = torch.tensor(wav_b).to(device).unsqueeze(0).unsqueeze(0) | |
enc_out_a = fa_encoder(wav_a) | |
enc_out_b = fa_encoder(wav_b) | |
vq_post_emb_a, vq_id_a, _, quantized, spk_embs_a = fa_decoder( | |
enc_out_a, eval_vq=False, vq=True | |
) | |
vq_post_emb_b, vq_id_b, _, quantized, spk_embs_b = fa_decoder( | |
enc_out_b, eval_vq=False, vq=True | |
) | |
recon_wav_a = fa_decoder.inference(vq_post_emb_a, spk_embs_a) | |
recon_wav_b = fa_decoder.inference(vq_post_emb_b, spk_embs_b) | |
vq_post_emb_a_to_b = fa_redecoder.vq2emb( | |
vq_id_a, spk_embs_b, use_residual=False | |
) | |
recon_wav_a_to_b = fa_redecoder.inference(vq_post_emb_a_to_b, spk_embs_b) | |
os.makedirs("temp", exist_ok=True) | |
recon_a_result_path = "temp/result_a.wav" | |
recon_b_result_path = "temp/result_b.wav" | |
vc_result_path = "temp/result_vc.wav" | |
sf.write(vc_result_path, recon_wav_a_to_b[0, 0].cpu().numpy(), 16000) | |
sf.write(recon_a_result_path, recon_wav_a[0, 0].cpu().numpy(), 16000) | |
sf.write(recon_b_result_path, recon_wav_b[0, 0].cpu().numpy(), 16000) | |
return recon_a_result_path, recon_b_result_path, vc_result_path | |
def codec_voice_conversion_v2(speech_path_a, speech_path_b): | |
with torch.no_grad(): | |
wav_a, sr = librosa.load(speech_path_a, sr=16000) | |
wav_a = np.pad(wav_a, (0, 200 - len(wav_a) % 200)) | |
wav_a = torch.tensor(wav_a).to(device).unsqueeze(0).unsqueeze(0) | |
wav_b, sr = librosa.load(speech_path_b, sr=16000) | |
wav_b = np.pad(wav_b, (0, 200 - len(wav_b) % 200)) | |
wav_b = torch.tensor(wav_b).to(device).unsqueeze(0).unsqueeze(0) | |
enc_out_a = fa_encoder_v2(wav_a) | |
prosody_a = fa_encoder_v2.get_prosody_feature(wav_a) | |
enc_out_b = fa_encoder_v2(wav_b) | |
prosody_b = fa_encoder_v2.get_prosody_feature(wav_b) | |
vq_post_emb_a, vq_id_a, _, quantized, spk_embs_a = fa_decoder_v2( | |
enc_out_a, prosody_a, eval_vq=False, vq=True | |
) | |
vq_post_emb_b, vq_id_b, _, quantized, spk_embs_b = fa_decoder_v2( | |
enc_out_b, prosody_b, eval_vq=False, vq=True | |
) | |
recon_wav_a = fa_decoder_v2.inference(vq_post_emb_a, spk_embs_a) | |
recon_wav_b = fa_decoder_v2.inference(vq_post_emb_b, spk_embs_b) | |
vq_post_emb_a_to_b = fa_decoder_v2.vq2emb(vq_id_a, use_residual=False) | |
recon_wav_a_to_b = fa_decoder_v2.inference(vq_post_emb_a_to_b, spk_embs_b) | |
os.makedirs("temp", exist_ok=True) | |
recon_a_result_path = "temp/result_a.wav" | |
recon_b_result_path = "temp/result_b.wav" | |
vc_result_path = "temp/result_vc.wav" | |
sf.write(vc_result_path, recon_wav_a_to_b[0, 0].cpu().numpy(), 16000) | |
sf.write(recon_a_result_path, recon_wav_a[0, 0].cpu().numpy(), 16000) | |
sf.write(recon_b_result_path, recon_wav_b[0, 0].cpu().numpy(), 16000) | |
return recon_a_result_path, recon_b_result_path, vc_result_path | |
demo_inputs = [ | |
gr.Audio( | |
sources=["upload", "microphone"], | |
label="Upload the speech file", | |
type="filepath", | |
), | |
] | |
demo_outputs = [ | |
gr.Audio(label="Speech reconstructed"), | |
] | |
vc_demo_inputs = [ | |
gr.Audio( | |
sources=["upload", "microphone"], | |
label="Upload the source speech file", | |
type="filepath", | |
), | |
gr.Audio( | |
sources=["upload", "microphone"], | |
label="Upload the reference speech file", | |
type="filepath", | |
), | |
] | |
vc_demo_outputs = [ | |
gr.Audio(label="Source speech reconstructed"), | |
gr.Audio(label="Reference speech reconstructed"), | |
gr.Audio(label="Voice conversion result"), | |
] | |
with gr.Blocks() as demo: | |
gr.Interface( | |
fn=codec_inference, | |
inputs=demo_inputs, | |
outputs=demo_outputs, | |
title="FACodec for NaturalSpeech 3", | |
description=""" | |
## FACodec: Speech Codec with Attribute Factorization used for NaturalSpeech 3 | |
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/pdf/2403.03100.pdf) | |
[![demo](https://img.shields.io/badge/FACodec-Demo-red)](https://speechresearch.github.io/naturalspeech3/) | |
[![model](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-pink)](https://huggingface.co./amphion/naturalspeech3_facodec) | |
## Overview | |
FACodec is a core component of the advanced text-to-speech (TTS) model NaturalSpeech 3. FACodec converts complex speech waveform into disentangled subspaces representing speech attributes of content, prosody, timbre, and acoustic details and reconstruct high-quality speech waveform from these attributes. FACodec decomposes complex speech into subspaces representing different attributes, thus simplifying the modeling of speech representation. | |
Research can use FACodec to develop different modes of TTS models, such as non-autoregressive based discrete diffusion (NaturalSpeech 3) or autoregressive models (like VALL-E). | |
""", | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
"default/ref/ref.wav" | |
], | |
], | |
inputs=demo_inputs, | |
) | |
gr.Interface( | |
fn=codec_voice_conversion_v2, | |
inputs=vc_demo_inputs, | |
outputs=vc_demo_outputs, | |
title="FACodec Voice Conversion", | |
description=""" | |
FACodec can achieve zero-shot voice conversion. | |
""", | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
"default/source/source.wav", | |
"default/ref/ref.wav", | |
], | |
], | |
inputs=vc_demo_inputs, | |
) | |
demo.queue() | |
demo.launch() | |