Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
from utils.util import pad_mels_to_tensors, pad_f0_to_tensors | |
def vocoder_inference(cfg, model, mels, f0s=None, device=None, fast_inference=False): | |
"""Inference the vocoder | |
Args: | |
mels: A tensor of mel-specs with the shape (batch_size, num_mels, frames) | |
Returns: | |
audios: A tensor of audios with the shape (batch_size, seq_len) | |
""" | |
model.eval() | |
with torch.no_grad(): | |
mels = mels.to(device) | |
if f0s != None: | |
f0s = f0s.to(device) | |
if f0s == None and not cfg.preprocess.extract_amplitude_phase: | |
output = model.forward(mels) | |
elif cfg.preprocess.extract_amplitude_phase: | |
( | |
_, | |
_, | |
_, | |
_, | |
output, | |
) = model.forward(mels) | |
else: | |
output = model.forward(mels, f0s) | |
return output.squeeze(1).detach().cpu() | |
def synthesis_audios(cfg, model, mels, f0s=None, batch_size=None, fast_inference=False): | |
"""Inference the vocoder | |
Args: | |
mels: A list of mel-specs | |
Returns: | |
audios: A list of audios | |
""" | |
# Get the device | |
device = next(model.parameters()).device | |
audios = [] | |
# Pad the given list into tensors | |
mel_batches, mel_frames = pad_mels_to_tensors(mels, batch_size) | |
if f0s != None: | |
f0_batches = pad_f0_to_tensors(f0s, batch_size) | |
if f0s == None: | |
for mel_batch, mel_frame in zip(mel_batches, mel_frames): | |
for i in range(mel_batch.shape[0]): | |
mel = mel_batch[i] | |
frame = mel_frame[i] | |
audio = vocoder_inference( | |
cfg, | |
model, | |
mel.unsqueeze(0), | |
device=device, | |
fast_inference=fast_inference, | |
).squeeze(0) | |
# calculate the audio length | |
audio_length = frame * model.cfg.preprocess.hop_size | |
audio = audio[:audio_length] | |
audios.append(audio) | |
else: | |
for mel_batch, f0_batch, mel_frame in zip(mel_batches, f0_batches, mel_frames): | |
for i in range(mel_batch.shape[0]): | |
mel = mel_batch[i] | |
f0 = f0_batch[i] | |
frame = mel_frame[i] | |
audio = vocoder_inference( | |
cfg, | |
model, | |
mel.unsqueeze(0), | |
f0s=f0.unsqueeze(0), | |
device=device, | |
fast_inference=fast_inference, | |
).squeeze(0) | |
# calculate the audio length | |
audio_length = frame * model.cfg.preprocess.hop_size | |
audio = audio[:audio_length] | |
audios.append(audio) | |
return audios | |