Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv1d, AvgPool1d | |
from torch.nn.utils import weight_norm, spectral_norm | |
from torch import nn | |
from modules.vocoder_blocks import * | |
LRELU_SLOPE = 0.1 | |
class DiscriminatorS(nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), | |
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
] | |
) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiScaleDiscriminator(nn.Module): | |
def __init__(self, cfg): | |
super(MultiScaleDiscriminator, self).__init__() | |
self.cfg = cfg | |
self.discriminators = nn.ModuleList( | |
[ | |
DiscriminatorS(use_spectral_norm=True), | |
DiscriminatorS(), | |
DiscriminatorS(), | |
] | |
) | |
self.meanpools = nn.ModuleList( | |
[AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)] | |
) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
if i != 0: | |
y = self.meanpools[i - 1](y) | |
y_hat = self.meanpools[i - 1](y_hat) | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class MultiScaleDiscriminator_JETS(nn.Module): | |
def __init__(self): | |
super(MultiScaleDiscriminator_JETS, self).__init__() | |
self.discriminators = nn.ModuleList( | |
[ | |
DiscriminatorS(use_spectral_norm=True), | |
DiscriminatorS(), | |
DiscriminatorS(), | |
] | |
) | |
self.meanpools = nn.ModuleList( | |
[AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)] | |
) | |
def forward(self, y): | |
y_d_rs = [] # p, y, groud-truth | |
fmap_rs = [] | |
for i, d in enumerate(self.discriminators): | |
if i != 0: | |
y = self.meanpools[i - 1](y) | |
y_d_r, fmap_r = d(y) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
return y_d_rs, fmap_rs | |
# fmap_rs is real, fmap_gs is generated. | |