Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import json | |
import os | |
import time | |
import numpy as np | |
from tqdm import tqdm | |
import torch | |
from torch.utils.data import DataLoader | |
from models.svc.base import SVCInference | |
from models.svc.vits.vits import SynthesizerTrn | |
from models.svc.base.svc_dataset import SVCTestDataset, SVCTestCollator | |
from utils.io import save_audio | |
from utils.audio_slicer import is_silence | |
class VitsInference(SVCInference): | |
def __init__(self, args=None, cfg=None, infer_type="from_dataset"): | |
SVCInference.__init__(self, args, cfg) | |
def _build_model(self): | |
net_g = SynthesizerTrn( | |
self.cfg.preprocess.n_fft // 2 + 1, | |
self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size, | |
self.cfg, | |
) | |
self.model = net_g | |
return net_g | |
def build_save_dir(self, dataset, speaker): | |
save_dir = os.path.join( | |
self.args.output_dir, | |
"svc_am_step-{}_{}".format(self.am_restore_step, self.args.mode), | |
) | |
if dataset is not None: | |
save_dir = os.path.join(save_dir, "data_{}".format(dataset)) | |
if speaker != -1: | |
save_dir = os.path.join( | |
save_dir, | |
"spk_{}".format(speaker), | |
) | |
os.makedirs(save_dir, exist_ok=True) | |
print("Saving to ", save_dir) | |
return save_dir | |
def _build_dataloader(self): | |
datasets, collate = self._build_test_dataset() | |
self.test_dataset = datasets(self.args, self.cfg, self.infer_type) | |
self.test_collate = collate(self.cfg) | |
self.test_batch_size = min( | |
self.cfg.inference.batch_size, len(self.test_dataset.metadata) | |
) | |
test_dataloader = DataLoader( | |
self.test_dataset, | |
collate_fn=self.test_collate, | |
num_workers=1, | |
batch_size=self.test_batch_size, | |
shuffle=False, | |
) | |
return test_dataloader | |
def inference(self): | |
res = [] | |
for i, batch in enumerate(self.test_dataloader): | |
pred_audio_list = self._inference_each_batch(batch) | |
for j, wav in enumerate(pred_audio_list): | |
uid = self.test_dataset.metadata[i * self.test_batch_size + j]["Uid"] | |
file = os.path.join(self.args.output_dir, f"{uid}.wav") | |
print(f"Saving {file}") | |
wav = wav.numpy(force=True) | |
save_audio( | |
file, | |
wav, | |
self.cfg.preprocess.sample_rate, | |
add_silence=False, | |
turn_up=not is_silence(wav, self.cfg.preprocess.sample_rate), | |
) | |
res.append(file) | |
return res | |
def _inference_each_batch(self, batch_data, noise_scale=0.667): | |
device = self.accelerator.device | |
pred_res = [] | |
self.model.eval() | |
with torch.no_grad(): | |
# Put the data to device | |
# device = self.accelerator.device | |
for k, v in batch_data.items(): | |
batch_data[k] = v.to(device) | |
audios, f0 = self.model.infer(batch_data, noise_scale=noise_scale) | |
pred_res.extend(audios) | |
return pred_res | |