Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import time | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
import torch.nn as nn | |
from collections import OrderedDict | |
from models.svc.base import SVCInference | |
from modules.encoder.condition_encoder import ConditionEncoder | |
from models.svc.transformer.transformer import Transformer | |
from models.svc.transformer.conformer import Conformer | |
class TransformerInference(SVCInference): | |
def __init__(self, args=None, cfg=None, infer_type="from_dataset"): | |
SVCInference.__init__(self, args, cfg, infer_type) | |
def _build_model(self): | |
self.cfg.model.condition_encoder.f0_min = self.cfg.preprocess.f0_min | |
self.cfg.model.condition_encoder.f0_max = self.cfg.preprocess.f0_max | |
self.condition_encoder = ConditionEncoder(self.cfg.model.condition_encoder) | |
if self.cfg.model.transformer.type == "transformer": | |
self.acoustic_mapper = Transformer(self.cfg.model.transformer) | |
elif self.cfg.model.transformer.type == "conformer": | |
self.acoustic_mapper = Conformer(self.cfg.model.transformer) | |
else: | |
raise NotImplementedError | |
model = torch.nn.ModuleList([self.condition_encoder, self.acoustic_mapper]) | |
return model | |
def _inference_each_batch(self, batch_data): | |
device = self.accelerator.device | |
for k, v in batch_data.items(): | |
batch_data[k] = v.to(device) | |
condition = self.condition_encoder(batch_data) | |
y_pred = self.acoustic_mapper(condition, batch_data["mask"]) | |
return y_pred | |