Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import numpy as np | |
import torch | |
from torch import nn, sin, pow | |
from torch.nn import Parameter | |
import torch.nn.functional as F | |
from torch.nn.utils import weight_norm | |
from .alias_free_torch import * | |
from .quantize import * | |
from einops import rearrange | |
from einops.layers.torch import Rearrange | |
from .transformer import TransformerEncoder | |
from .gradient_reversal import GradientReversal | |
from .melspec import MelSpectrogram | |
def init_weights(m): | |
if isinstance(m, nn.Conv1d): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def WNConv1d(*args, **kwargs): | |
return weight_norm(nn.Conv1d(*args, **kwargs)) | |
def WNConvTranspose1d(*args, **kwargs): | |
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) | |
class CNNLSTM(nn.Module): | |
def __init__(self, indim, outdim, head, global_pred=False): | |
super().__init__() | |
self.global_pred = global_pred | |
self.model = nn.Sequential( | |
ResidualUnit(indim, dilation=1), | |
ResidualUnit(indim, dilation=2), | |
ResidualUnit(indim, dilation=3), | |
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)), | |
Rearrange("b c t -> b t c"), | |
) | |
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)]) | |
def forward(self, x): | |
# x: [B, C, T] | |
x = self.model(x) | |
if self.global_pred: | |
x = torch.mean(x, dim=1, keepdim=False) | |
outs = [head(x) for head in self.heads] | |
return outs | |
class SnakeBeta(nn.Module): | |
""" | |
A modified Snake function which uses separate parameters for the magnitude of the periodic components | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
Parameters: | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
References: | |
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = snakebeta(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
""" | |
def __init__( | |
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False | |
): | |
""" | |
Initialization. | |
INPUT: | |
- in_features: shape of the input | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
alpha is initialized to 1 by default, higher values = higher-frequency. | |
beta is initialized to 1 by default, higher values = higher-magnitude. | |
alpha will be trained along with the rest of your model. | |
""" | |
super(SnakeBeta, self).__init__() | |
self.in_features = in_features | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: # log scale alphas initialized to zeros | |
self.alpha = Parameter(torch.zeros(in_features) * alpha) | |
self.beta = Parameter(torch.zeros(in_features) * alpha) | |
else: # linear scale alphas initialized to ones | |
self.alpha = Parameter(torch.ones(in_features) * alpha) | |
self.beta = Parameter(torch.ones(in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
""" | |
Forward pass of the function. | |
Applies the function to the input elementwise. | |
SnakeBeta := x + 1/b * sin^2 (xa) | |
""" | |
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] | |
beta = self.beta.unsqueeze(0).unsqueeze(-1) | |
if self.alpha_logscale: | |
alpha = torch.exp(alpha) | |
beta = torch.exp(beta) | |
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
return x | |
class ResidualUnit(nn.Module): | |
def __init__(self, dim: int = 16, dilation: int = 1): | |
super().__init__() | |
pad = ((7 - 1) * dilation) // 2 | |
self.block = nn.Sequential( | |
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), | |
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), | |
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), | |
WNConv1d(dim, dim, kernel_size=1), | |
) | |
def forward(self, x): | |
return x + self.block(x) | |
class EncoderBlock(nn.Module): | |
def __init__(self, dim: int = 16, stride: int = 1): | |
super().__init__() | |
self.block = nn.Sequential( | |
ResidualUnit(dim // 2, dilation=1), | |
ResidualUnit(dim // 2, dilation=3), | |
ResidualUnit(dim // 2, dilation=9), | |
Activation1d(activation=SnakeBeta(dim // 2, alpha_logscale=True)), | |
WNConv1d( | |
dim // 2, | |
dim, | |
kernel_size=2 * stride, | |
stride=stride, | |
padding=stride // 2 + stride % 2, | |
), | |
) | |
def forward(self, x): | |
return self.block(x) | |
class FACodecEncoder(nn.Module): | |
def __init__( | |
self, | |
ngf=32, | |
up_ratios=(2, 4, 5, 5), | |
out_channels=1024, | |
): | |
super().__init__() | |
self.hop_length = np.prod(up_ratios) | |
self.up_ratios = up_ratios | |
# Create first convolution | |
d_model = ngf | |
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)] | |
# Create EncoderBlocks that double channels as they downsample by `stride` | |
for stride in up_ratios: | |
d_model *= 2 | |
self.block += [EncoderBlock(d_model, stride=stride)] | |
# Create last convolution | |
self.block += [ | |
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)), | |
WNConv1d(d_model, out_channels, kernel_size=3, padding=1), | |
] | |
# Wrap black into nn.Sequential | |
self.block = nn.Sequential(*self.block) | |
self.enc_dim = d_model | |
self.reset_parameters() | |
def forward(self, x): | |
out = self.block(x) | |
return out | |
def inference(self, x): | |
return self.block(x) | |
def remove_weight_norm(self): | |
"""Remove weight normalization module from all of the layers.""" | |
def _remove_weight_norm(m): | |
try: | |
torch.nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, nn.Conv1d): | |
torch.nn.utils.weight_norm(m) | |
self.apply(_apply_weight_norm) | |
def reset_parameters(self): | |
self.apply(init_weights) | |
class DecoderBlock(nn.Module): | |
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1): | |
super().__init__() | |
self.block = nn.Sequential( | |
Activation1d(activation=SnakeBeta(input_dim, alpha_logscale=True)), | |
WNConvTranspose1d( | |
input_dim, | |
output_dim, | |
kernel_size=2 * stride, | |
stride=stride, | |
padding=stride // 2 + stride % 2, | |
output_padding=stride % 2, | |
), | |
ResidualUnit(output_dim, dilation=1), | |
ResidualUnit(output_dim, dilation=3), | |
ResidualUnit(output_dim, dilation=9), | |
) | |
def forward(self, x): | |
return self.block(x) | |
class FACodecDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=256, | |
upsample_initial_channel=1536, | |
ngf=32, | |
up_ratios=(5, 5, 4, 2), | |
vq_num_q_c=2, | |
vq_num_q_p=1, | |
vq_num_q_r=3, | |
vq_dim=1024, | |
vq_commit_weight=0.005, | |
vq_weight_init=False, | |
vq_full_commit_loss=False, | |
codebook_dim=8, | |
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size | |
codebook_size_content=10, | |
codebook_size_residual=10, | |
quantizer_dropout=0.0, | |
dropout_type="linear", | |
use_gr_content_f0=False, | |
use_gr_prosody_phone=False, | |
use_gr_residual_f0=False, | |
use_gr_residual_phone=False, | |
use_gr_x_timbre=False, | |
use_random_mask_residual=True, | |
prob_random_mask_residual=0.75, | |
): | |
super().__init__() | |
self.hop_length = np.prod(up_ratios) | |
self.ngf = ngf | |
self.up_ratios = up_ratios | |
self.use_random_mask_residual = use_random_mask_residual | |
self.prob_random_mask_residual = prob_random_mask_residual | |
self.vq_num_q_p = vq_num_q_p | |
self.vq_num_q_c = vq_num_q_c | |
self.vq_num_q_r = vq_num_q_r | |
self.codebook_size_prosody = codebook_size_prosody | |
self.codebook_size_content = codebook_size_content | |
self.codebook_size_residual = codebook_size_residual | |
quantizer_class = ResidualVQ | |
self.quantizer = nn.ModuleList() | |
# prosody | |
quantizer = quantizer_class( | |
num_quantizers=vq_num_q_p, | |
dim=vq_dim, | |
codebook_size=codebook_size_prosody, | |
codebook_dim=codebook_dim, | |
threshold_ema_dead_code=2, | |
commitment=vq_commit_weight, | |
weight_init=vq_weight_init, | |
full_commit_loss=vq_full_commit_loss, | |
quantizer_dropout=quantizer_dropout, | |
dropout_type=dropout_type, | |
) | |
self.quantizer.append(quantizer) | |
# phone | |
quantizer = quantizer_class( | |
num_quantizers=vq_num_q_c, | |
dim=vq_dim, | |
codebook_size=codebook_size_content, | |
codebook_dim=codebook_dim, | |
threshold_ema_dead_code=2, | |
commitment=vq_commit_weight, | |
weight_init=vq_weight_init, | |
full_commit_loss=vq_full_commit_loss, | |
quantizer_dropout=quantizer_dropout, | |
dropout_type=dropout_type, | |
) | |
self.quantizer.append(quantizer) | |
# residual | |
if self.vq_num_q_r > 0: | |
quantizer = quantizer_class( | |
num_quantizers=vq_num_q_r, | |
dim=vq_dim, | |
codebook_size=codebook_size_residual, | |
codebook_dim=codebook_dim, | |
threshold_ema_dead_code=2, | |
commitment=vq_commit_weight, | |
weight_init=vq_weight_init, | |
full_commit_loss=vq_full_commit_loss, | |
quantizer_dropout=quantizer_dropout, | |
dropout_type=dropout_type, | |
) | |
self.quantizer.append(quantizer) | |
# Add first conv layer | |
channels = upsample_initial_channel | |
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)] | |
# Add upsampling + MRF blocks | |
for i, stride in enumerate(up_ratios): | |
input_dim = channels // 2**i | |
output_dim = channels // 2 ** (i + 1) | |
layers += [DecoderBlock(input_dim, output_dim, stride)] | |
# Add final conv layer | |
layers += [ | |
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)), | |
WNConv1d(output_dim, 1, kernel_size=7, padding=3), | |
nn.Tanh(), | |
] | |
self.model = nn.Sequential(*layers) | |
self.timbre_encoder = TransformerEncoder( | |
enc_emb_tokens=None, | |
encoder_layer=4, | |
encoder_hidden=256, | |
encoder_head=4, | |
conv_filter_size=1024, | |
conv_kernel_size=5, | |
encoder_dropout=0.1, | |
use_cln=False, | |
) | |
self.timbre_linear = nn.Linear(in_channels, in_channels * 2) | |
self.timbre_linear.bias.data[:in_channels] = 1 | |
self.timbre_linear.bias.data[in_channels:] = 0 | |
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False) | |
self.f0_predictor = CNNLSTM(in_channels, 1, 2) | |
self.phone_predictor = CNNLSTM(in_channels, 5003, 1) | |
self.use_gr_content_f0 = use_gr_content_f0 | |
self.use_gr_prosody_phone = use_gr_prosody_phone | |
self.use_gr_residual_f0 = use_gr_residual_f0 | |
self.use_gr_residual_phone = use_gr_residual_phone | |
self.use_gr_x_timbre = use_gr_x_timbre | |
if self.vq_num_q_r > 0 and self.use_gr_residual_f0: | |
self.res_f0_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2) | |
) | |
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0: | |
self.res_phone_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1) | |
) | |
if self.use_gr_content_f0: | |
self.content_f0_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2) | |
) | |
if self.use_gr_prosody_phone: | |
self.prosody_phone_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1) | |
) | |
if self.use_gr_x_timbre: | |
self.x_timbre_predictor = nn.Sequential( | |
GradientReversal(alpha=1), | |
CNNLSTM(in_channels, 245200, 1, global_pred=True), | |
) | |
self.reset_parameters() | |
def quantize(self, x, n_quantizers=None): | |
outs, qs, commit_loss, quantized_buf = 0, [], [], [] | |
# prosody | |
f0_input = x # (B, d, T) | |
f0_quantizer = self.quantizer[0] | |
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers) | |
outs += out | |
qs.append(q) | |
quantized_buf.append(quantized.sum(0)) | |
commit_loss.append(commit) | |
# phone | |
phone_input = x | |
phone_quantizer = self.quantizer[1] | |
out, q, commit, quantized = phone_quantizer( | |
phone_input, n_quantizers=n_quantizers | |
) | |
outs += out | |
qs.append(q) | |
quantized_buf.append(quantized.sum(0)) | |
commit_loss.append(commit) | |
# residual | |
if self.vq_num_q_r > 0: | |
residual_quantizer = self.quantizer[2] | |
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach() | |
out, q, commit, quantized = residual_quantizer( | |
residual_input, n_quantizers=n_quantizers | |
) | |
outs += out | |
qs.append(q) | |
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T] | |
commit_loss.append(commit) | |
qs = torch.cat(qs, dim=0) | |
commit_loss = torch.cat(commit_loss, dim=0) | |
return outs, qs, commit_loss, quantized_buf | |
def forward( | |
self, | |
x, | |
vq=True, | |
get_vq=False, | |
eval_vq=True, | |
speaker_embedding=None, | |
n_quantizers=None, | |
quantized=None, | |
): | |
if get_vq: | |
return self.quantizer.get_emb() | |
if vq is True: | |
if eval_vq: | |
self.quantizer.eval() | |
x_timbre = x | |
outs, qs, commit_loss, quantized_buf = self.quantize( | |
x, n_quantizers=n_quantizers | |
) | |
x_timbre = x_timbre.transpose(1, 2) | |
x_timbre = self.timbre_encoder(x_timbre, None, None) | |
x_timbre = x_timbre.transpose(1, 2) | |
spk_embs = torch.mean(x_timbre, dim=2) | |
return outs, qs, commit_loss, quantized_buf, spk_embs | |
out = {} | |
layer_0 = quantized[0] | |
f0, uv = self.f0_predictor(layer_0) | |
f0 = rearrange(f0, "... 1 -> ...") | |
uv = rearrange(uv, "... 1 -> ...") | |
layer_1 = quantized[1] | |
(phone,) = self.phone_predictor(layer_1) | |
out = {"f0": f0, "uv": uv, "phone": phone} | |
if self.use_gr_prosody_phone: | |
(prosody_phone,) = self.prosody_phone_predictor(layer_0) | |
out["prosody_phone"] = prosody_phone | |
if self.use_gr_content_f0: | |
content_f0, content_uv = self.content_f0_predictor(layer_1) | |
content_f0 = rearrange(content_f0, "... 1 -> ...") | |
content_uv = rearrange(content_uv, "... 1 -> ...") | |
out["content_f0"] = content_f0 | |
out["content_uv"] = content_uv | |
if self.vq_num_q_r > 0: | |
layer_2 = quantized[2] | |
if self.use_gr_residual_f0: | |
res_f0, res_uv = self.res_f0_predictor(layer_2) | |
res_f0 = rearrange(res_f0, "... 1 -> ...") | |
res_uv = rearrange(res_uv, "... 1 -> ...") | |
out["res_f0"] = res_f0 | |
out["res_uv"] = res_uv | |
if self.use_gr_residual_phone: | |
(res_phone,) = self.res_phone_predictor(layer_2) | |
out["res_phone"] = res_phone | |
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1) | |
gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
if self.vq_num_q_r > 0: | |
if self.use_random_mask_residual: | |
bsz = quantized[2].shape[0] | |
res_mask = np.random.choice( | |
[0, 1], | |
size=bsz, | |
p=[ | |
self.prob_random_mask_residual, | |
1 - self.prob_random_mask_residual, | |
], | |
) | |
res_mask = ( | |
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) | |
) # (B, 1, 1) | |
res_mask = res_mask.to( | |
device=quantized[2].device, dtype=quantized[2].dtype | |
) | |
x = ( | |
quantized[0].detach() | |
+ quantized[1].detach() | |
+ quantized[2] * res_mask | |
) | |
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask | |
else: | |
x = quantized[0].detach() + quantized[1].detach() + quantized[2] | |
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] | |
else: | |
x = quantized[0].detach() + quantized[1].detach() | |
# x = quantized_perturbe[0].detach() + quantized[1].detach() | |
if self.use_gr_x_timbre: | |
(x_timbre,) = self.x_timbre_predictor(x) | |
out["x_timbre"] = x_timbre | |
x = x.transpose(1, 2) | |
x = self.timbre_norm(x) | |
x = x.transpose(1, 2) | |
x = x * gamma + beta | |
x = self.model(x) | |
out["audio"] = x | |
return out | |
def vq2emb(self, vq, use_residual_code=True): | |
# vq: [num_quantizer, B, T] | |
self.quantizer = self.quantizer.eval() | |
out = 0 | |
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p]) | |
out += self.quantizer[1].vq2emb( | |
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c] | |
) | |
if self.vq_num_q_r > 0 and use_residual_code: | |
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :]) | |
return out | |
def inference(self, x, speaker_embedding): | |
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1) | |
gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
x = x.transpose(1, 2) | |
x = self.timbre_norm(x) | |
x = x.transpose(1, 2) | |
x = x * gamma + beta | |
x = self.model(x) | |
return x | |
def remove_weight_norm(self): | |
"""Remove weight normalization module from all of the layers.""" | |
def _remove_weight_norm(m): | |
try: | |
torch.nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): | |
torch.nn.utils.weight_norm(m) | |
self.apply(_apply_weight_norm) | |
def reset_parameters(self): | |
self.apply(init_weights) | |
class FACodecRedecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=256, | |
upsample_initial_channel=1280, | |
up_ratios=(5, 5, 4, 2), | |
vq_num_q_c=2, | |
vq_num_q_p=1, | |
vq_num_q_r=3, | |
vq_dim=256, | |
codebook_size_prosody=10, | |
codebook_size_content=10, | |
codebook_size_residual=10, | |
): | |
super().__init__() | |
self.hop_length = np.prod(up_ratios) | |
self.up_ratios = up_ratios | |
self.vq_num_q_p = vq_num_q_p | |
self.vq_num_q_c = vq_num_q_c | |
self.vq_num_q_r = vq_num_q_r | |
self.vq_dim = vq_dim | |
self.codebook_size_prosody = codebook_size_prosody | |
self.codebook_size_content = codebook_size_content | |
self.codebook_size_residual = codebook_size_residual | |
self.prosody_embs = nn.ModuleList() | |
for i in range(self.vq_num_q_p): | |
emb_tokens = nn.Embedding( | |
num_embeddings=2**self.codebook_size_prosody, | |
embedding_dim=self.vq_dim, | |
) | |
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5) | |
self.prosody_embs.append(emb_tokens) | |
self.content_embs = nn.ModuleList() | |
for i in range(self.vq_num_q_c): | |
emb_tokens = nn.Embedding( | |
num_embeddings=2**self.codebook_size_content, | |
embedding_dim=self.vq_dim, | |
) | |
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5) | |
self.content_embs.append(emb_tokens) | |
self.residual_embs = nn.ModuleList() | |
for i in range(self.vq_num_q_r): | |
emb_tokens = nn.Embedding( | |
num_embeddings=2**self.codebook_size_residual, | |
embedding_dim=self.vq_dim, | |
) | |
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5) | |
self.residual_embs.append(emb_tokens) | |
# Add first conv layer | |
channels = upsample_initial_channel | |
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)] | |
# Add upsampling + MRF blocks | |
for i, stride in enumerate(up_ratios): | |
input_dim = channels // 2**i | |
output_dim = channels // 2 ** (i + 1) | |
layers += [DecoderBlock(input_dim, output_dim, stride)] | |
# Add final conv layer | |
layers += [ | |
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)), | |
WNConv1d(output_dim, 1, kernel_size=7, padding=3), | |
nn.Tanh(), | |
] | |
self.model = nn.Sequential(*layers) | |
self.timbre_linear = nn.Linear(in_channels, in_channels * 2) | |
self.timbre_linear.bias.data[:in_channels] = 1 | |
self.timbre_linear.bias.data[in_channels:] = 0 | |
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False) | |
self.timbre_cond_prosody_enc = TransformerEncoder( | |
enc_emb_tokens=None, | |
encoder_layer=4, | |
encoder_hidden=256, | |
encoder_head=4, | |
conv_filter_size=1024, | |
conv_kernel_size=5, | |
encoder_dropout=0.1, | |
use_cln=True, | |
cfg=None, | |
) | |
def forward( | |
self, | |
vq, | |
speaker_embedding, | |
use_residual_code=False, | |
): | |
x = 0 | |
x_p = 0 | |
for i in range(self.vq_num_q_p): | |
x_p = x_p + self.prosody_embs[i](vq[i]) # (B, T, d) | |
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_p.shape[1], -1) | |
x_p = self.timbre_cond_prosody_enc( | |
x_p, key_padding_mask=None, condition=spk_cond | |
) | |
x = x + x_p | |
x_c = 0 | |
for i in range(self.vq_num_q_c): | |
x_c = x_c + self.content_embs[i](vq[self.vq_num_q_p + i]) | |
x = x + x_c | |
if use_residual_code: | |
x_r = 0 | |
for i in range(self.vq_num_q_r): | |
x_r = x_r + self.residual_embs[i]( | |
vq[self.vq_num_q_p + self.vq_num_q_c + i] | |
) | |
x = x + x_r | |
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1) | |
gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
x = x.transpose(1, 2) | |
x = self.timbre_norm(x) | |
x = x.transpose(1, 2) | |
x = x * gamma + beta | |
x = self.model(x) | |
return x | |
def vq2emb(self, vq, speaker_embedding, use_residual=True): | |
out = 0 | |
x_t = 0 | |
for i in range(self.vq_num_q_p): | |
x_t += self.prosody_embs[i](vq[i]) # (B, T, d) | |
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_t.shape[1], -1) | |
x_t = self.timbre_cond_prosody_enc( | |
x_t, key_padding_mask=None, condition=spk_cond | |
) | |
# prosody | |
out += x_t | |
# content | |
for i in range(self.vq_num_q_c): | |
out += self.content_embs[i](vq[self.vq_num_q_p + i]) | |
# residual | |
if use_residual: | |
for i in range(self.vq_num_q_r): | |
out += self.residual_embs[i](vq[self.vq_num_q_p + self.vq_num_q_c + i]) | |
out = out.transpose(1, 2) # (B, T, d) -> (B, d, T) | |
return out | |
def inference(self, x, speaker_embedding): | |
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1) | |
gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
x = x.transpose(1, 2) | |
x = self.timbre_norm(x) | |
x = x.transpose(1, 2) | |
x = x * gamma + beta | |
x = self.model(x) | |
return x | |
class FACodecEncoderV2(nn.Module): | |
def __init__( | |
self, | |
ngf=32, | |
up_ratios=(2, 4, 5, 5), | |
out_channels=1024, | |
): | |
super().__init__() | |
self.hop_length = np.prod(up_ratios) | |
self.up_ratios = up_ratios | |
# Create first convolution | |
d_model = ngf | |
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)] | |
# Create EncoderBlocks that double channels as they downsample by `stride` | |
for stride in up_ratios: | |
d_model *= 2 | |
self.block += [EncoderBlock(d_model, stride=stride)] | |
# Create last convolution | |
self.block += [ | |
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)), | |
WNConv1d(d_model, out_channels, kernel_size=3, padding=1), | |
] | |
# Wrap black into nn.Sequential | |
self.block = nn.Sequential(*self.block) | |
self.enc_dim = d_model | |
self.mel_transform = MelSpectrogram( | |
n_fft=1024, | |
num_mels=80, | |
sampling_rate=16000, | |
hop_size=200, | |
win_size=800, | |
fmin=0, | |
fmax=8000, | |
) | |
self.reset_parameters() | |
def forward(self, x): | |
out = self.block(x) | |
return out | |
def inference(self, x): | |
return self.block(x) | |
def get_prosody_feature(self, x): | |
return self.mel_transform(x.squeeze(1))[:, :20, :] | |
def remove_weight_norm(self): | |
"""Remove weight normalization module from all of the layers.""" | |
def _remove_weight_norm(m): | |
try: | |
torch.nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, nn.Conv1d): | |
torch.nn.utils.weight_norm(m) | |
self.apply(_apply_weight_norm) | |
def reset_parameters(self): | |
self.apply(init_weights) | |
class FACodecDecoderV2(nn.Module): | |
def __init__( | |
self, | |
in_channels=256, | |
upsample_initial_channel=1536, | |
ngf=32, | |
up_ratios=(5, 5, 4, 2), | |
vq_num_q_c=2, | |
vq_num_q_p=1, | |
vq_num_q_r=3, | |
vq_dim=1024, | |
vq_commit_weight=0.005, | |
vq_weight_init=False, | |
vq_full_commit_loss=False, | |
codebook_dim=8, | |
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size | |
codebook_size_content=10, | |
codebook_size_residual=10, | |
quantizer_dropout=0.0, | |
dropout_type="linear", | |
use_gr_content_f0=False, | |
use_gr_prosody_phone=False, | |
use_gr_residual_f0=False, | |
use_gr_residual_phone=False, | |
use_gr_x_timbre=False, | |
use_random_mask_residual=True, | |
prob_random_mask_residual=0.75, | |
): | |
super().__init__() | |
self.hop_length = np.prod(up_ratios) | |
self.ngf = ngf | |
self.up_ratios = up_ratios | |
self.use_random_mask_residual = use_random_mask_residual | |
self.prob_random_mask_residual = prob_random_mask_residual | |
self.vq_num_q_p = vq_num_q_p | |
self.vq_num_q_c = vq_num_q_c | |
self.vq_num_q_r = vq_num_q_r | |
self.codebook_size_prosody = codebook_size_prosody | |
self.codebook_size_content = codebook_size_content | |
self.codebook_size_residual = codebook_size_residual | |
quantizer_class = ResidualVQ | |
self.quantizer = nn.ModuleList() | |
# prosody | |
quantizer = quantizer_class( | |
num_quantizers=vq_num_q_p, | |
dim=vq_dim, | |
codebook_size=codebook_size_prosody, | |
codebook_dim=codebook_dim, | |
threshold_ema_dead_code=2, | |
commitment=vq_commit_weight, | |
weight_init=vq_weight_init, | |
full_commit_loss=vq_full_commit_loss, | |
quantizer_dropout=quantizer_dropout, | |
dropout_type=dropout_type, | |
) | |
self.quantizer.append(quantizer) | |
# phone | |
quantizer = quantizer_class( | |
num_quantizers=vq_num_q_c, | |
dim=vq_dim, | |
codebook_size=codebook_size_content, | |
codebook_dim=codebook_dim, | |
threshold_ema_dead_code=2, | |
commitment=vq_commit_weight, | |
weight_init=vq_weight_init, | |
full_commit_loss=vq_full_commit_loss, | |
quantizer_dropout=quantizer_dropout, | |
dropout_type=dropout_type, | |
) | |
self.quantizer.append(quantizer) | |
# residual | |
if self.vq_num_q_r > 0: | |
quantizer = quantizer_class( | |
num_quantizers=vq_num_q_r, | |
dim=vq_dim, | |
codebook_size=codebook_size_residual, | |
codebook_dim=codebook_dim, | |
threshold_ema_dead_code=2, | |
commitment=vq_commit_weight, | |
weight_init=vq_weight_init, | |
full_commit_loss=vq_full_commit_loss, | |
quantizer_dropout=quantizer_dropout, | |
dropout_type=dropout_type, | |
) | |
self.quantizer.append(quantizer) | |
# Add first conv layer | |
channels = upsample_initial_channel | |
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)] | |
# Add upsampling + MRF blocks | |
for i, stride in enumerate(up_ratios): | |
input_dim = channels // 2**i | |
output_dim = channels // 2 ** (i + 1) | |
layers += [DecoderBlock(input_dim, output_dim, stride)] | |
# Add final conv layer | |
layers += [ | |
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)), | |
WNConv1d(output_dim, 1, kernel_size=7, padding=3), | |
nn.Tanh(), | |
] | |
self.model = nn.Sequential(*layers) | |
self.timbre_encoder = TransformerEncoder( | |
enc_emb_tokens=None, | |
encoder_layer=4, | |
encoder_hidden=256, | |
encoder_head=4, | |
conv_filter_size=1024, | |
conv_kernel_size=5, | |
encoder_dropout=0.1, | |
use_cln=False, | |
) | |
self.timbre_linear = nn.Linear(in_channels, in_channels * 2) | |
self.timbre_linear.bias.data[:in_channels] = 1 | |
self.timbre_linear.bias.data[in_channels:] = 0 | |
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False) | |
self.f0_predictor = CNNLSTM(in_channels, 1, 2) | |
self.phone_predictor = CNNLSTM(in_channels, 5003, 1) | |
self.use_gr_content_f0 = use_gr_content_f0 | |
self.use_gr_prosody_phone = use_gr_prosody_phone | |
self.use_gr_residual_f0 = use_gr_residual_f0 | |
self.use_gr_residual_phone = use_gr_residual_phone | |
self.use_gr_x_timbre = use_gr_x_timbre | |
if self.vq_num_q_r > 0 and self.use_gr_residual_f0: | |
self.res_f0_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2) | |
) | |
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0: | |
self.res_phone_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1) | |
) | |
if self.use_gr_content_f0: | |
self.content_f0_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2) | |
) | |
if self.use_gr_prosody_phone: | |
self.prosody_phone_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1) | |
) | |
if self.use_gr_x_timbre: | |
self.x_timbre_predictor = nn.Sequential( | |
GradientReversal(alpha=1), | |
CNNLSTM(in_channels, 245200, 1, global_pred=True), | |
) | |
self.melspec_linear = nn.Linear(20, 256) | |
self.melspec_encoder = TransformerEncoder( | |
enc_emb_tokens=None, | |
encoder_layer=4, | |
encoder_hidden=256, | |
encoder_head=4, | |
conv_filter_size=1024, | |
conv_kernel_size=5, | |
encoder_dropout=0.1, | |
use_cln=False, | |
cfg=None, | |
) | |
self.reset_parameters() | |
def quantize(self, x, prosody_feature, n_quantizers=None): | |
outs, qs, commit_loss, quantized_buf = 0, [], [], [] | |
# prosody | |
f0_input = prosody_feature.transpose(1, 2) # (B, T, 20) | |
f0_input = self.melspec_linear(f0_input) | |
f0_input = self.melspec_encoder(f0_input, None, None) | |
f0_input = f0_input.transpose(1, 2) | |
f0_quantizer = self.quantizer[0] | |
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers) | |
outs += out | |
qs.append(q) | |
quantized_buf.append(quantized.sum(0)) | |
commit_loss.append(commit) | |
# phone | |
phone_input = x | |
phone_quantizer = self.quantizer[1] | |
out, q, commit, quantized = phone_quantizer( | |
phone_input, n_quantizers=n_quantizers | |
) | |
outs += out | |
qs.append(q) | |
quantized_buf.append(quantized.sum(0)) | |
commit_loss.append(commit) | |
# residual | |
if self.vq_num_q_r > 0: | |
residual_quantizer = self.quantizer[2] | |
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach() | |
out, q, commit, quantized = residual_quantizer( | |
residual_input, n_quantizers=n_quantizers | |
) | |
outs += out | |
qs.append(q) | |
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T] | |
commit_loss.append(commit) | |
qs = torch.cat(qs, dim=0) | |
commit_loss = torch.cat(commit_loss, dim=0) | |
return outs, qs, commit_loss, quantized_buf | |
def forward( | |
self, | |
x, | |
prosody_feature, | |
vq=True, | |
get_vq=False, | |
eval_vq=True, | |
speaker_embedding=None, | |
n_quantizers=None, | |
quantized=None, | |
): | |
if get_vq: | |
return self.quantizer.get_emb() | |
if vq is True: | |
if eval_vq: | |
self.quantizer.eval() | |
x_timbre = x | |
outs, qs, commit_loss, quantized_buf = self.quantize( | |
x, prosody_feature, n_quantizers=n_quantizers | |
) | |
x_timbre = x_timbre.transpose(1, 2) | |
x_timbre = self.timbre_encoder(x_timbre, None, None) | |
x_timbre = x_timbre.transpose(1, 2) | |
spk_embs = torch.mean(x_timbre, dim=2) | |
return outs, qs, commit_loss, quantized_buf, spk_embs | |
out = {} | |
layer_0 = quantized[0] | |
f0, uv = self.f0_predictor(layer_0) | |
f0 = rearrange(f0, "... 1 -> ...") | |
uv = rearrange(uv, "... 1 -> ...") | |
layer_1 = quantized[1] | |
(phone,) = self.phone_predictor(layer_1) | |
out = {"f0": f0, "uv": uv, "phone": phone} | |
if self.use_gr_prosody_phone: | |
(prosody_phone,) = self.prosody_phone_predictor(layer_0) | |
out["prosody_phone"] = prosody_phone | |
if self.use_gr_content_f0: | |
content_f0, content_uv = self.content_f0_predictor(layer_1) | |
content_f0 = rearrange(content_f0, "... 1 -> ...") | |
content_uv = rearrange(content_uv, "... 1 -> ...") | |
out["content_f0"] = content_f0 | |
out["content_uv"] = content_uv | |
if self.vq_num_q_r > 0: | |
layer_2 = quantized[2] | |
if self.use_gr_residual_f0: | |
res_f0, res_uv = self.res_f0_predictor(layer_2) | |
res_f0 = rearrange(res_f0, "... 1 -> ...") | |
res_uv = rearrange(res_uv, "... 1 -> ...") | |
out["res_f0"] = res_f0 | |
out["res_uv"] = res_uv | |
if self.use_gr_residual_phone: | |
(res_phone,) = self.res_phone_predictor(layer_2) | |
out["res_phone"] = res_phone | |
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1) | |
gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
if self.vq_num_q_r > 0: | |
if self.use_random_mask_residual: | |
bsz = quantized[2].shape[0] | |
res_mask = np.random.choice( | |
[0, 1], | |
size=bsz, | |
p=[ | |
self.prob_random_mask_residual, | |
1 - self.prob_random_mask_residual, | |
], | |
) | |
res_mask = ( | |
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) | |
) # (B, 1, 1) | |
res_mask = res_mask.to( | |
device=quantized[2].device, dtype=quantized[2].dtype | |
) | |
x = ( | |
quantized[0].detach() | |
+ quantized[1].detach() | |
+ quantized[2] * res_mask | |
) | |
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask | |
else: | |
x = quantized[0].detach() + quantized[1].detach() + quantized[2] | |
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] | |
else: | |
x = quantized[0].detach() + quantized[1].detach() | |
# x = quantized_perturbe[0].detach() + quantized[1].detach() | |
if self.use_gr_x_timbre: | |
(x_timbre,) = self.x_timbre_predictor(x) | |
out["x_timbre"] = x_timbre | |
x = x.transpose(1, 2) | |
x = self.timbre_norm(x) | |
x = x.transpose(1, 2) | |
x = x * gamma + beta | |
x = self.model(x) | |
out["audio"] = x | |
return out | |
def vq2emb(self, vq, use_residual=True): | |
# vq: [num_quantizer, B, T] | |
self.quantizer = self.quantizer.eval() | |
out = 0 | |
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p]) | |
out += self.quantizer[1].vq2emb( | |
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c] | |
) | |
if self.vq_num_q_r > 0 and use_residual: | |
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :]) | |
return out | |
def inference(self, x, speaker_embedding): | |
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1) | |
gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
x = x.transpose(1, 2) | |
x = self.timbre_norm(x) | |
x = x.transpose(1, 2) | |
x = x * gamma + beta | |
x = self.model(x) | |
return x | |
def remove_weight_norm(self): | |
"""Remove weight normalization module from all of the layers.""" | |
def _remove_weight_norm(m): | |
try: | |
torch.nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): | |
torch.nn.utils.weight_norm(m) | |
self.apply(_apply_weight_norm) | |
def reset_parameters(self): | |
self.apply(init_weights) | |