Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from torch.nn.utils import weight_norm | |
from models.codec.amphion_codec.quantize import ( | |
ResidualVQ, | |
VectorQuantize, | |
FactorizedVectorQuantize, | |
LookupFreeQuantize, | |
) | |
from models.codec.amphion_codec.vocos import Vocos | |
def WNConv1d(*args, **kwargs): | |
return weight_norm(nn.Conv1d(*args, **kwargs)) | |
def WNConvTranspose1d(*args, **kwargs): | |
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) | |
# Scripting this brings model speed up 1.4x | |
def snake(x, alpha): | |
shape = x.shape | |
x = x.reshape(shape[0], shape[1], -1) | |
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2) | |
x = x.reshape(shape) | |
return x | |
class Snake1d(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.alpha = nn.Parameter(torch.ones(1, channels, 1)) | |
def forward(self, x): | |
return snake(x, self.alpha) | |
def init_weights(m): | |
if isinstance(m, nn.Conv1d): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
if isinstance(m, nn.Linear): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
class ResidualUnit(nn.Module): | |
def __init__(self, dim: int = 16, dilation: int = 1): | |
super().__init__() | |
pad = ((7 - 1) * dilation) // 2 | |
self.block = nn.Sequential( | |
Snake1d(dim), | |
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), | |
Snake1d(dim), | |
WNConv1d(dim, dim, kernel_size=1), | |
) | |
def forward(self, x): | |
y = self.block(x) | |
pad = (x.shape[-1] - y.shape[-1]) // 2 | |
if pad > 0: | |
x = x[..., pad:-pad] | |
return x + y | |
class EncoderBlock(nn.Module): | |
def __init__(self, dim: int = 16, stride: int = 1): | |
super().__init__() | |
self.block = nn.Sequential( | |
ResidualUnit(dim // 2, dilation=1), | |
ResidualUnit(dim // 2, dilation=3), | |
ResidualUnit(dim // 2, dilation=9), | |
Snake1d(dim // 2), | |
WNConv1d( | |
dim // 2, | |
dim, | |
kernel_size=2 * stride, | |
stride=stride, | |
padding=math.ceil(stride / 2), | |
), | |
) | |
def forward(self, x): | |
return self.block(x) | |
class CodecEncoder(nn.Module): | |
def __init__( | |
self, | |
d_model: int = 64, | |
up_ratios: list = [4, 5, 5, 6], | |
out_channels: int = 256, | |
use_tanh: bool = False, | |
cfg=None, | |
): | |
super().__init__() | |
d_model = cfg.d_model if cfg is not None else d_model | |
up_ratios = cfg.up_ratios if cfg is not None else up_ratios | |
out_channels = cfg.out_channels if cfg is not None else out_channels | |
use_tanh = cfg.use_tanh if cfg is not None else use_tanh | |
# Create first convolution | |
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)] | |
# Create EncoderBlocks that double channels as they downsample by `stride` | |
for stride in up_ratios: | |
d_model *= 2 | |
self.block += [EncoderBlock(d_model, stride=stride)] | |
# Create last convolution | |
self.block += [ | |
Snake1d(d_model), | |
WNConv1d(d_model, out_channels, kernel_size=3, padding=1), | |
] | |
if use_tanh: | |
self.block += [nn.Tanh()] | |
# Wrap black into nn.Sequential | |
self.block = nn.Sequential(*self.block) | |
self.enc_dim = d_model | |
self.reset_parameters() | |
def forward(self, x): | |
return self.block(x) | |
def reset_parameters(self): | |
self.apply(init_weights) | |
class DecoderBlock(nn.Module): | |
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1): | |
super().__init__() | |
self.block = nn.Sequential( | |
Snake1d(input_dim), | |
WNConvTranspose1d( | |
input_dim, | |
output_dim, | |
kernel_size=2 * stride, | |
stride=stride, | |
padding=stride // 2 + stride % 2, | |
output_padding=stride % 2, | |
), | |
ResidualUnit(output_dim, dilation=1), | |
ResidualUnit(output_dim, dilation=3), | |
ResidualUnit(output_dim, dilation=9), | |
) | |
def forward(self, x): | |
return self.block(x) | |
class CodecDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int = 256, | |
upsample_initial_channel: int = 1536, | |
up_ratios: list = [5, 5, 4, 2], | |
num_quantizers: int = 8, | |
codebook_size: int = 1024, | |
codebook_dim: int = 256, | |
quantizer_type: str = "vq", | |
quantizer_dropout: float = 0.5, | |
commitment: float = 0.25, | |
codebook_loss_weight: float = 1.0, | |
use_l2_normlize: bool = False, | |
codebook_type: str = "euclidean", | |
kmeans_init: bool = False, | |
kmeans_iters: int = 10, | |
decay: float = 0.8, | |
eps: float = 1e-5, | |
threshold_ema_dead_code: int = 2, | |
weight_init: bool = False, | |
use_vocos: bool = False, | |
vocos_dim: int = 384, | |
vocos_intermediate_dim: int = 1152, | |
vocos_num_layers: int = 8, | |
n_fft: int = 800, | |
hop_size: int = 200, | |
padding: str = "same", | |
cfg=None, | |
): | |
super().__init__() | |
in_channels = ( | |
cfg.in_channels | |
if cfg is not None and hasattr(cfg, "in_channels") | |
else in_channels | |
) | |
upsample_initial_channel = ( | |
cfg.upsample_initial_channel | |
if cfg is not None and hasattr(cfg, "upsample_initial_channel") | |
else upsample_initial_channel | |
) | |
up_ratios = ( | |
cfg.up_ratios | |
if cfg is not None and hasattr(cfg, "up_ratios") | |
else up_ratios | |
) | |
num_quantizers = ( | |
cfg.num_quantizers | |
if cfg is not None and hasattr(cfg, "num_quantizers") | |
else num_quantizers | |
) | |
codebook_size = ( | |
cfg.codebook_size | |
if cfg is not None and hasattr(cfg, "codebook_size") | |
else codebook_size | |
) | |
codebook_dim = ( | |
cfg.codebook_dim | |
if cfg is not None and hasattr(cfg, "codebook_dim") | |
else codebook_dim | |
) | |
quantizer_type = ( | |
cfg.quantizer_type | |
if cfg is not None and hasattr(cfg, "quantizer_type") | |
else quantizer_type | |
) | |
quantizer_dropout = ( | |
cfg.quantizer_dropout | |
if cfg is not None and hasattr(cfg, "quantizer_dropout") | |
else quantizer_dropout | |
) | |
commitment = ( | |
cfg.commitment | |
if cfg is not None and hasattr(cfg, "commitment") | |
else commitment | |
) | |
codebook_loss_weight = ( | |
cfg.codebook_loss_weight | |
if cfg is not None and hasattr(cfg, "codebook_loss_weight") | |
else codebook_loss_weight | |
) | |
use_l2_normlize = ( | |
cfg.use_l2_normlize | |
if cfg is not None and hasattr(cfg, "use_l2_normlize") | |
else use_l2_normlize | |
) | |
codebook_type = ( | |
cfg.codebook_type | |
if cfg is not None and hasattr(cfg, "codebook_type") | |
else codebook_type | |
) | |
kmeans_init = ( | |
cfg.kmeans_init | |
if cfg is not None and hasattr(cfg, "kmeans_init") | |
else kmeans_init | |
) | |
kmeans_iters = ( | |
cfg.kmeans_iters | |
if cfg is not None and hasattr(cfg, "kmeans_iters") | |
else kmeans_iters | |
) | |
decay = cfg.decay if cfg is not None and hasattr(cfg, "decay") else decay | |
eps = cfg.eps if cfg is not None and hasattr(cfg, "eps") else eps | |
threshold_ema_dead_code = ( | |
cfg.threshold_ema_dead_code | |
if cfg is not None and hasattr(cfg, "threshold_ema_dead_code") | |
else threshold_ema_dead_code | |
) | |
weight_init = ( | |
cfg.weight_init | |
if cfg is not None and hasattr(cfg, "weight_init") | |
else weight_init | |
) | |
use_vocos = ( | |
cfg.use_vocos | |
if cfg is not None and hasattr(cfg, "use_vocos") | |
else use_vocos | |
) | |
vocos_dim = ( | |
cfg.vocos_dim | |
if cfg is not None and hasattr(cfg, "vocos_dim") | |
else vocos_dim | |
) | |
vocos_intermediate_dim = ( | |
cfg.vocos_intermediate_dim | |
if cfg is not None and hasattr(cfg, "vocos_intermediate_dim") | |
else vocos_intermediate_dim | |
) | |
vocos_num_layers = ( | |
cfg.vocos_num_layers | |
if cfg is not None and hasattr(cfg, "vocos_num_layers") | |
else vocos_num_layers | |
) | |
n_fft = cfg.n_fft if cfg is not None and hasattr(cfg, "n_fft") else n_fft | |
hop_size = ( | |
cfg.hop_size if cfg is not None and hasattr(cfg, "hop_size") else hop_size | |
) | |
padding = ( | |
cfg.padding if cfg is not None and hasattr(cfg, "padding") else padding | |
) | |
if quantizer_type == "vq": | |
self.quantizer = ResidualVQ( | |
input_dim=in_channels, | |
num_quantizers=num_quantizers, | |
codebook_size=codebook_size, | |
codebook_dim=codebook_dim, | |
quantizer_type=quantizer_type, | |
quantizer_dropout=quantizer_dropout, | |
commitment=commitment, | |
codebook_loss_weight=codebook_loss_weight, | |
use_l2_normlize=use_l2_normlize, | |
codebook_type=codebook_type, | |
kmeans_init=kmeans_init, | |
kmeans_iters=kmeans_iters, | |
decay=decay, | |
eps=eps, | |
threshold_ema_dead_code=threshold_ema_dead_code, | |
weight_init=weight_init, | |
) | |
elif quantizer_type == "fvq": | |
self.quantizer = ResidualVQ( | |
input_dim=in_channels, | |
num_quantizers=num_quantizers, | |
codebook_size=codebook_size, | |
codebook_dim=codebook_dim, | |
quantizer_type=quantizer_type, | |
quantizer_dropout=quantizer_dropout, | |
commitment=commitment, | |
codebook_loss_weight=codebook_loss_weight, | |
use_l2_normlize=use_l2_normlize, | |
) | |
elif quantizer_type == "lfq": | |
self.quantizer = ResidualVQ( | |
input_dim=in_channels, | |
num_quantizers=num_quantizers, | |
codebook_size=codebook_size, | |
codebook_dim=codebook_dim, | |
quantizer_type=quantizer_type, | |
) | |
else: | |
raise ValueError(f"Unknown quantizer type {quantizer_type}") | |
if not use_vocos: | |
# Add first conv layer | |
channels = upsample_initial_channel | |
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)] | |
# Add upsampling + MRF blocks | |
for i, stride in enumerate(up_ratios): | |
input_dim = channels // 2**i | |
output_dim = channels // 2 ** (i + 1) | |
layers += [DecoderBlock(input_dim, output_dim, stride)] | |
# Add final conv layer | |
layers += [ | |
Snake1d(output_dim), | |
WNConv1d(output_dim, 1, kernel_size=7, padding=3), | |
nn.Tanh(), | |
] | |
self.model = nn.Sequential(*layers) | |
if use_vocos: | |
self.model = Vocos( | |
input_channels=in_channels, | |
dim=vocos_dim, | |
intermediate_dim=vocos_intermediate_dim, | |
num_layers=vocos_num_layers, | |
adanorm_num_embeddings=None, | |
n_fft=n_fft, | |
hop_size=hop_size, | |
padding=padding, | |
) | |
self.reset_parameters() | |
def forward(self, x=None, vq=False, eval_vq=False, n_quantizers=None): | |
""" | |
if vq is True, x = encoder output, then return quantized output; | |
else, x = quantized output, then return decoder output | |
""" | |
if vq is True: | |
if eval_vq: | |
self.quantizer.eval() | |
( | |
quantized_out, | |
all_indices, | |
all_commit_losses, | |
all_codebook_losses, | |
all_quantized, | |
) = self.quantizer(x, n_quantizers=n_quantizers) | |
return ( | |
quantized_out, | |
all_indices, | |
all_commit_losses, | |
all_codebook_losses, | |
all_quantized, | |
) | |
return self.model(x) | |
def quantize(self, x, n_quantizers=None): | |
self.quantizer.eval() | |
quantized_out, vq, _, _, _ = self.quantizer(x, n_quantizers=n_quantizers) | |
return quantized_out, vq | |
# TODO: check consistency of vq2emb and quantize | |
def vq2emb(self, vq, n_quantizers=None): | |
return self.quantizer.vq2emb(vq, n_quantizers=n_quantizers) | |
def decode(self, x): | |
return self.model(x) | |
def latent2dist(self, x, n_quantizers=None): | |
return self.quantizer.latent2dist(x, n_quantizers=n_quantizers) | |
def reset_parameters(self): | |
self.apply(init_weights) | |