Hecheng0625's picture
Upload 409 files
c968fc3 verified
raw
history blame
12.6 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv2d, Conv1d
from torch.nn.utils import weight_norm, spectral_norm
from torch import nn
from modules.vocoder_blocks import *
from models.vocoders.gan.discriminator.msd import MultiScaleDiscriminator_JETS
LRELU_SLOPE = 0.1
class DiscriminatorP(torch.nn.Module):
def __init__(self, cfg, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.d_mult = cfg.model.mpd.discriminator_channel_mult_factor
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(
Conv2d(
1,
int(32 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
)
),
norm_f(
Conv2d(
int(32 * self.d_mult),
int(128 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
)
),
norm_f(
Conv2d(
int(128 * self.d_mult),
int(512 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
)
),
norm_f(
Conv2d(
int(512 * self.d_mult),
int(1024 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
)
),
norm_f(
Conv2d(
int(1024 * self.d_mult),
int(1024 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(2, 0),
)
),
]
)
self.conv_post = norm_f(
Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0))
)
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, cfg):
super(MultiPeriodDiscriminator, self).__init__()
self.mpd_reshapes = cfg.model.mpd.mpd_reshapes
print("mpd_reshapes: {}".format(self.mpd_reshapes))
discriminators = [
DiscriminatorP(cfg, rs, use_spectral_norm=cfg.model.mpd.use_spectral_norm)
for rs in self.mpd_reshapes
]
self.discriminators = nn.ModuleList(discriminators)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
# TODO: merge with DiscriminatorP (lmxue, yicheng)
class DiscriminatorP_vits(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP_vits, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(
Conv2d(
1,
32,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
32,
128,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
128,
512,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
512,
1024,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
1024,
1024,
(kernel_size, 1),
1,
padding=(get_padding(kernel_size, 1), 0),
)
),
]
)
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
# TODO: merge with MultiPeriodDiscriminator (lmxue, yicheng)
class MultiPeriodDiscriminator_vits(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator_vits, self).__init__()
periods = [2, 3, 5, 7, 11]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [
DiscriminatorP_vits(i, use_spectral_norm=use_spectral_norm) for i in periods
]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
outputs = {
"y_d_hat_r": y_d_rs,
"y_d_hat_g": y_d_gs,
"fmap_rs": fmap_rs,
"fmap_gs": fmap_gs,
}
return outputs
class DiscriminatorP_JETS(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP_JETS, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(
Conv2d(
1,
32,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
32,
128,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
128,
512,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
512,
1024,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
1024,
1024,
(kernel_size, 1),
1,
padding=(get_padding(kernel_size, 1), 0),
)
),
]
)
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
x = torch.flatten(x, 1, -1)
fmap.append(x)
return x, fmap
class MultiPeriodDiscriminator_JETS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator_JETS, self).__init__()
periods = [2, 3, 5, 7, 11]
discs = [
DiscriminatorP_JETS(i, use_spectral_norm=use_spectral_norm) for i in periods
]
self.discriminators = nn.ModuleList(discs)
def forward(self, y):
y_d_rs = []
fmap_rs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
return y_d_rs, fmap_rs
# JETS Multi-scale Multi-period discriminator module.
class MultiScaleMultiPeriodDiscriminator(torch.nn.Module):
"""HiFi-GAN multi-scale + multi-period discriminator module."""
def __init__(self, use_spectral_norm=False):
super(MultiScaleMultiPeriodDiscriminator, self).__init__()
self.msd = MultiScaleDiscriminator_JETS()
self.mpd = MultiPeriodDiscriminator_JETS()
def forward(self, y):
_, msd_outs_d_rs = self.msd(y)
# msd_outs = self.msd(y, y_hat)
_, mpd_outs_d_rs = self.mpd(y)
# mpd_outs = self.mpd(y, y_hat)
return msd_outs_d_rs + mpd_outs_d_rs
# ground_truth, generated
# return msd_outs + mpd_outs