Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,360 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Pretrained Models Dependency
The models dependency of Amphion are as follows (sort alphabetically):
- [Pretrained Models Dependency](#pretrained-models-dependency)
- [Amphion Singing BigVGAN](#amphion-singing-bigvgan)
- [Amphion Speech HiFi-GAN](#amphion-speech-hifi-gan)
- [ContentVec](#contentvec)
- [WeNet](#wenet)
- [Whisper](#whisper)
- [RawNet3](#rawnet3)
The instructions about how to download them is displayed as follows.
## Amphion Singing BigVGAN
We fine-tune the official BigVGAN pretrained model with over 120 hours singing voice data. The fine-tuned checkpoint can be downloaded [here](https://huggingface.co./amphion/BigVGAN_singing_bigdata). You need to download the `400000.pt` and `args.json` files into `Amphion/pretrained/bigvgan`:
```
Amphion
β£ pretrained
β β£ bivgan
β β β£ 400000.pt
β β β£ args.json
```
## Amphion Speech HiFi-GAN
We trained our HiFi-GAN pretrained model with 685 hours speech data. Which can be downloaded [here](https://huggingface.co./amphion/hifigan_speech_bigdata). You need to download the whole folder of `hifigan_speech` into `Amphion/pretrained/hifigan`.
```
Amphion
β£ pretrained
β β£ hifigan
β β β£ hifigan_speech
β β β β£ log
β β β β£ result
β β β β£ checkpoint
β β β β£ args.json
```
## Amphion DiffWave
We trained our DiffWave pretrained model with 125 hours speech data and around 80 hours of singing voice data. Which can be downloaded [here](https://huggingface.co./amphion/diffwave). You need to download the whole folder of `diffwave` into `Amphion/pretrained/diffwave`.
```
Amphion
β£ pretrained
β β£ diffwave
β β β£ diffwave_speech
β β β β£ samples
β β β β£ checkpoint
β β β β£ args.json
```
## ContentVec
You can download the pretrained ContentVec model [here](https://github.com/auspicious3000/contentvec). Note that we use the `ContentVec_legacy-500 classes` checkpoint. Assume that you download the `checkpoint_best_legacy_500.pt` into the `Amphion/pretrained/contentvec`.
```
Amphion
β£ pretrained
β β£ contentvec
β β β£ checkpoint_best_legacy_500.pt
```
## WeNet
You can download the pretrained WeNet model [here](https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.md). Take the `wenetspeech` pretrained checkpoint as an example, assume you download the `wenetspeech_u2pp_conformer_exp.tar` into the `Amphion/pretrained/wenet`. Unzip it and modify its configuration file as follows:
```sh
cd Amphion/pretrained/wenet
### Unzip the expt dir
tar -xvf wenetspeech_u2pp_conformer_exp.tar.gz
### Specify the updated path in train.yaml
cd 20220506_u2pp_conformer_exp
vim train.yaml
# TODO: Change the value of "cmvn_file" (Line 2) to the absolute path of the `global_cmvn` file. (Eg: [YourPath]/Amphion/pretrained/wenet/20220506_u2pp_conformer_exp/global_cmvn)
```
The final file struture tree is like:
```
Amphion
β£ pretrained
β β£ wenet
β β β£ 20220506_u2pp_conformer_exp
β β β β£ final.pt
β β β β£ global_cmvn
β β β β£ train.yaml
β β β β£ units.txt
```
## Whisper
The official pretrained whisper checkpoints can be available [here](https://github.com/openai/whisper/blob/e58f28804528831904c3b6f2c0e473f346223433/whisper/__init__.py#L17). In Amphion, we use the `medium` whisper model by default. You can download it as follows:
```bash
cd Amphion/pretrained
mkdir whisper
cd whisper
wget https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt
```
The final file structure tree is like:
```
Amphion
β£ pretrained
β β£ whisper
β β β£ medium.pt
```
## RawNet3
The official pretrained RawNet3 checkpoints can be available [here](https://huggingface.co./jungjee/RawNet3). You need to download the `model.pt` file and put it in the folder.
The final file structure tree is like:
```
Amphion
β£ pretrained
β β£ rawnet3
β β β£ model.pt
```
# (Optional) Model Dependencies for Evaluation
When utilizing Amphion's Evaluation Pipelines, terminals without access to `huggingface.co` may encounter error messages such as "OSError: Can't load tokenizer for ...". To work around this, the dependant models for evaluation can be pre-prepared and stored here, at `Amphion/pretrained`, and follow [this README](../egs/metrics/README.md#troubleshooting) to configure your environment to load local models.
The dependant models of Amphion's evaluation pipeline are as follows (sort alphabetically):
- [Evaluation Pipeline Models Dependency](#optional-model-dependencies-for-evaluation)
- [bert-base-uncased](#bert-base-uncased)
- [facebook/bart-base](#facebookbart-base)
- [roberta-base](#roberta-base)
- [wavlm](#wavlm)
The instructions about how to download them is displayed as follows.
## bert-base-uncased
To load `bert-base-uncased` locally, follow [this link](https://huggingface.co./bert-base-uncased) to download all files for `bert-base-uncased` model, and store them under `Amphion/pretrained/bert-base-uncased`, conforming to the following file structure tree:
```
Amphion
β£ pretrained
β β£ bert-base-uncased
β β β£ config.json
β β β£ coreml
β β β β£ fill-mask
β β β β£ float32_model.mlpackage
β β β β£ Data
β β β β£ com.apple.CoreML
β β β β£ model.mlmodel
β β β£ flax_model.msgpack
β β β£ LICENSE
β β β£ model.onnx
β β β£ model.safetensors
β β β£ pytorch_model.bin
β β β£ README.md
β β β£ rust_model.ot
β β β£ tf_model.h5
β β β£ tokenizer_config.json
β β β£ tokenizer.json
β β β£ vocab.txt
```
## facebook/bart-base
To load `facebook/bart-base` locally, follow [this link](https://huggingface.co./facebook/bart-base) to download all files for `facebook/bart-base` model, and store them under `Amphion/pretrained/facebook/bart-base`, conforming to the following file structure tree:
```
Amphion
β£ pretrained
β β£ facebook
β β β£ bart-base
β β β β£ config.json
β β β β£ flax_model.msgpack
β β β β£ gitattributes.txt
β β β β£ merges.txt
β β β β£ model.safetensors
β β β β£ pytorch_model.bin
β β β β£ README.txt
β β β β£ rust_model.ot
β β β β£ tf_model.h5
β β β β£ tokenizer.json
β β β β£ vocab.json
```
## roberta-base
To load `roberta-base` locally, follow [this link](https://huggingface.co./roberta-base) to download all files for `roberta-base` model, and store them under `Amphion/pretrained/roberta-base`, conforming to the following file structure tree:
```
Amphion
β£ pretrained
β β£ roberta-base
β β β£ config.json
β β β£ dict.txt
β β β£ flax_model.msgpack
β β β£ gitattributes.txt
β β β£ merges.txt
β β β£ model.safetensors
β β β£ pytorch_model.bin
β β β£ README.txt
β β β£ rust_model.ot
β β β£ tf_model.h5
β β β£ tokenizer.json
β β β£ vocab.json
```
## wavlm
The official pretrained wavlm checkpoints can be available [here](https://huggingface.co./microsoft/wavlm-base-plus-sv). The file structure tree is as follows:
```
Amphion
β£ wavlm
β β£ config.json
β β£ preprocessor_config.json
β β£ pytorch_model.bin
``` |