File size: 28,043 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# This code is modified from https://github.com/lifeiteng/vall-e/blob/main/valle/models/valle.py

import random
from typing import Dict, Iterator, List, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics.classification import MulticlassAccuracy
from utils.util import make_pad_mask
from utils.topk_sampling import topk_sampling
from modules.general import Transpose
from modules.encoder import TokenEmbedding
from modules.general import PromptedFeatures
from modules.transformer import SinePositionalEmbedding
from modules.norms import AdaptiveLayerNorm, LayerNorm
from modules.transformer.transformer import TransformerEncoder, TransformerEncoderLayer


class VALLE(nn.Module):
    def __init__(
        self,
        cfg,
        decoder_cls=TransformerEncoder,
        decoder_layer_cls=TransformerEncoderLayer,
    ):
        super().__init__()
        decoder_dim = cfg.decoder_dim
        nhead = cfg.nhead
        nar_scale_factor = cfg.nar_scale_factor
        num_quantizers = cfg.num_quantizers
        num_decoder_layers = cfg.num_decoder_layers
        nar_decoder_dim = int(decoder_dim * nar_scale_factor)

        self.ar_text_embedding = TokenEmbedding(decoder_dim, cfg.text_token_num)
        self.nar_text_embedding = TokenEmbedding(nar_decoder_dim, cfg.text_token_num)

        self.ar_audio_prepend_bos = cfg.prepend_bos
        self.ar_audio_embedding = TokenEmbedding(
            decoder_dim, cfg.audio_token_num + 1 + int(cfg.prepend_bos)
        )
        self.audio_token_num = cfg.audio_token_num

        # PreNet of AR
        if cfg.add_prenet:
            self.ar_text_prenet = nn.Sequential(
                Transpose(),
                nn.Conv1d(decoder_dim, decoder_dim, kernel_size=5, padding="same"),
                nn.BatchNorm1d(decoder_dim),
                nn.ReLU(),
                nn.Dropout(0.5),
                nn.Conv1d(decoder_dim, decoder_dim, kernel_size=5, padding="same"),
                nn.BatchNorm1d(decoder_dim),
                nn.ReLU(),
                nn.Dropout(0.5),
                nn.Conv1d(decoder_dim, decoder_dim, kernel_size=5, padding="same"),
                nn.BatchNorm1d(decoder_dim),
                nn.ReLU(),
                nn.Dropout(0.5),
                Transpose(),
                nn.Linear(decoder_dim, decoder_dim),
            )

            self.ar_audio_prenet = nn.Sequential(
                nn.Linear(decoder_dim, 256),
                nn.ReLU(),
                nn.Dropout(0.25),
                nn.Linear(256, 256),
                nn.ReLU(),
                nn.Dropout(0.25),
                nn.Linear(256, decoder_dim),
            )
        else:
            self.ar_text_prenet = nn.Identity()
            self.ar_audio_prenet = nn.Identity()

        self.ar_text_position = SinePositionalEmbedding(
            decoder_dim,
            dropout=0.1,
            scale=False,
            alpha=True,
        )
        self.ar_audio_position = SinePositionalEmbedding(
            decoder_dim,
            dropout=0.1,
            scale=False,
            alpha=True,
        )

        self.ar_decoder = decoder_cls(
            decoder_layer_cls(
                decoder_dim,
                nhead,
                dim_feedforward=decoder_dim * 4,  # *4?
                dropout=0.1,
                batch_first=True,
                norm_first=cfg.norm_first,
            ),
            num_layers=num_decoder_layers,
            norm=LayerNorm(decoder_dim) if cfg.norm_first else None,
        )
        self.ar_predict_layer = nn.Linear(
            decoder_dim, cfg.audio_token_num + 1, bias=False
        )

        self.ar_accuracy_metric = MulticlassAccuracy(
            cfg.audio_token_num + 1,
            top_k=10,
            average="micro",
            multidim_average="global",
            ignore_index=cfg.audio_token_num,
        )

        self.rng = random.Random(0)
        self.num_heads = nhead
        self.prefix_mode = cfg.prefix_mode
        self.num_quantizers = num_quantizers

        assert num_quantizers >= 1
        if num_quantizers > 1:
            self.nar_audio_embeddings = nn.ModuleList(
                [
                    TokenEmbedding(nar_decoder_dim, cfg.audio_token_num + 1)
                ]  # Why the first layer is audio_token_num + 1?
                + [
                    TokenEmbedding(nar_decoder_dim, cfg.audio_token_num)
                    for i in range(num_quantizers - 1)
                ]
            )

            if cfg.add_prenet:
                self.nar_text_prenet = nn.Sequential(
                    Transpose(),
                    nn.Conv1d(
                        nar_decoder_dim, nar_decoder_dim, kernel_size=5, padding="same"
                    ),
                    nn.BatchNorm1d(nar_decoder_dim),
                    nn.ReLU(),
                    nn.Dropout(0.5),
                    nn.Conv1d(
                        nar_decoder_dim, nar_decoder_dim, kernel_size=5, padding="same"
                    ),
                    nn.BatchNorm1d(nar_decoder_dim),
                    nn.ReLU(),
                    nn.Dropout(0.5),
                    nn.Conv1d(
                        nar_decoder_dim, nar_decoder_dim, kernel_size=5, padding="same"
                    ),
                    nn.BatchNorm1d(nar_decoder_dim),
                    nn.ReLU(),
                    nn.Dropout(0.5),
                    Transpose(),
                    nn.Linear(nar_decoder_dim, nar_decoder_dim),
                )
                self.nar_audio_prenet = nn.Sequential(
                    nn.Linear(nar_decoder_dim, 256),
                    nn.ReLU(),
                    nn.Dropout(0.25),
                    nn.Linear(256, 256),
                    nn.ReLU(),
                    nn.Dropout(0.25),
                    nn.Linear(256, nar_decoder_dim),
                )
            else:
                self.nar_text_prenet = nn.Identity()
                self.nar_audio_prenet = nn.Identity()

            self.nar_text_position = SinePositionalEmbedding(
                nar_decoder_dim,
                dropout=0.0,
                scale=False,
                alpha=False,
            )
            self.nar_audio_position = SinePositionalEmbedding(
                nar_decoder_dim,
                dropout=0.1,
                scale=False,
                alpha=False,
            )

            self.nar_decoder = decoder_cls(
                decoder_layer_cls(
                    nar_decoder_dim,
                    int(nhead * nar_scale_factor),
                    dim_feedforward=nar_decoder_dim * 4,
                    dropout=0.1,
                    batch_first=True,
                    norm_first=cfg.norm_first,
                    adaptive_layer_norm=True,
                ),
                num_layers=int(num_decoder_layers * nar_scale_factor),
                norm=(
                    AdaptiveLayerNorm(
                        nar_decoder_dim, norm=nn.LayerNorm(nar_decoder_dim)
                    )
                    if cfg.norm_first
                    else None
                ),
            )
            self.nar_predict_layers = nn.ModuleList(
                [
                    nn.Linear(nar_decoder_dim, cfg.audio_token_num, bias=False)
                    for i in range(num_quantizers - 1)
                ]
            )
            self.nar_stage_embeddings = nn.ModuleList(
                [TokenEmbedding(nar_decoder_dim, 1) for i in range(num_quantizers - 1)]
            )

            if cfg.share_embedding:
                for j in range(0, num_quantizers - 2):
                    self.nar_predict_layers[j].weight = self.nar_audio_embeddings[
                        j + 2
                    ].weight

            self.nar_accuracy_metric = MulticlassAccuracy(
                cfg.audio_token_num + 1,
                top_k=10,
                average="micro",
                multidim_average="global",
                ignore_index=cfg.audio_token_num,
            )

    def forward(
        self,
        x: torch.Tensor,
        x_lens: torch.Tensor,
        y: Union[torch.Tensor, PromptedFeatures],
        y_lens: Union[torch.Tensor, PromptedFeatures],
        reduction: str = "sum",
        train_stage: int = 0,
        **kwargs,
    ) -> Tuple[torch.Tensor, Union[torch.Tensor, None]]:
        """
        Args:
          x:
            A 2-D tensor of shape (N, S).
          x_lens:
            A 1-D tensor of shape (N,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (N, T, 8).
          y_lens:
            A 1-D tensor of shape (N,). It contains the number of tokens in `x`
            before padding.
          train_stage:
            0: AR & NAR modules, 1: AR modules, 2: NAR modules
        Returns:
          Return the predicted audio code matrix, cross-entropy loss and Top-10 accuracy.
        """
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape

        y_prompts_codes = None
        if isinstance(y, PromptedFeatures):
            y_prompts_codes, y = y.data
            prompts_len, y_lens = y_lens.data
            assert prompts_len.min() == prompts_len.max()
            assert self.prefix_mode == 4
            y_prompts_codes = y_prompts_codes.type(torch.int64)

        assert y.ndim == 3, y.shape
        assert y_lens.ndim == 1, y_lens.shape

        x_mask = make_pad_mask(x_lens).to(x.device)
        y_mask = make_pad_mask(y_lens).to(y.device)
        y_mask_int = y_mask.type(torch.int64)

        text = x
        codes = y.type(torch.int64) * (1 - y_mask_int.unsqueeze(dim=-1))

        y, targets = self.pad_y_eos(
            codes[..., 0], y_mask_int, eos_id=self.audio_token_num
        )
        self.y_mask_int = y_mask_int

        metrics = {}
        total_loss = 0.0

        xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
        if self.ar_audio_prepend_bos:
            ar_xy_padding_mask = torch.concat(
                [x_mask, F.pad(y_mask, (1, 0), value=False)], dim=1
            )
        else:
            ar_xy_padding_mask = xy_padding_mask
        self.xy_padding_mask = xy_padding_mask
        self.ar_xy_padding_mask = ar_xy_padding_mask

        # AR Decoder
        if train_stage in [0, 1]:
            ar_loss, ar_metrics = self._forward_ar_decoder(
                text, x_lens.max(), y, y_lens.max(), targets, x_mask, y_mask, reduction
            )
            total_loss += ar_loss
            metrics["AR_Top100Acc"] = ar_metrics

        # NAR Decoder
        if self.ar_audio_prepend_bos:
            y = y[:, 1:]

        if self.num_quantizers > 1 and train_stage in [0, 2]:
            nar_loss, nar_metrics = self._forward_nar_decoder(
                text,
                x_lens,
                y,
                y_lens,
                codes,
                y_prompts_codes,
                x_mask,
                y_mask,
                reduction,
            )
            total_loss += nar_loss
            metrics["NAR_Top100Acc"] = nar_metrics

        if train_stage == 0:
            total_loss = total_loss / 2.0

        return total_loss, metrics

    def _forward_ar_decoder(
        self, x, x_len, y, y_lens, targets, x_mask, y_mask, reduction
    ):
        x = self.ar_text_embedding(x)
        x = self.ar_text_prenet(x)
        x = self.ar_text_position(x)

        y_len = y_lens.max() + int(self.ar_audio_prepend_bos)

        x_attn_mask = F.pad(
            torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
            (0, y_len),
            value=True,
        )
        y_attn_mask = F.pad(
            torch.triu(
                torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
                diagonal=1,
            ),
            (x_len, 0),
            value=False,
        )
        xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)

        bsz, src_len = x.shape[0], x_len + y_len
        _xy_padding_mask = (
            self.ar_xy_padding_mask.view(bsz, 1, 1, src_len)
            .expand(-1, self.num_heads, -1, -1)
            .reshape(bsz * self.num_heads, 1, src_len)
        )
        xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)

        new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
        new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
        xy_attn_mask = new_attn_mask

        y_emb = self.ar_audio_embedding(y)
        y_emb = self.ar_audio_prenet(y_emb)
        y_pos = self.ar_audio_position(y_emb)

        xy_pos = torch.concat([x, y_pos], dim=1)

        xy_dec, _ = self.ar_decoder(
            (xy_pos, None),
            mask=xy_attn_mask,
        )
        logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
        ar_loss = F.cross_entropy(logits, targets, reduction=reduction)

        ar_metrics = self.ar_accuracy_metric(
            logits.detach(), targets
        ).item() * y_lens.sum().type(torch.float32)

        return ar_loss, ar_metrics

    def _forward_nar_decoder(
        self, x, x_lens, y, y_lens, codes, y_prompts_codes, x_mask, y_mask, reduction
    ):
        num_nar_layers = self.num_quantizers - 1
        nar_stage = self.rng.choices(
            [_k for _k in range(1, self.num_quantizers)],
            weights=[1.0 / num_nar_layers] * num_nar_layers,
            k=1,
        )[0]

        x = self.nar_text_embedding(x)
        x = self.nar_text_prenet(x)
        x = self.nar_text_position(x)

        y_emb, prefix_len = self._prepare_prompts(
            y, y_lens, codes, nar_stage, y_prompts_codes
        )

        y_len = y_lens.max()
        targets = codes[..., nar_stage] + self.audio_token_num * self.y_mask_int
        if self.prefix_mode in [2, 4]:
            xy_padding_mask = torch.concat(
                [
                    x_mask,
                    F.pad(y_mask, (y_emb.shape[1] - y_len, 0), value=False),
                ],
                dim=1,
            )
        elif self.prefix_mode == 1:
            targets = targets[:, prefix_len:]

        y_pos = self.nar_audio_prenet(y_emb)
        y_pos = self.nar_audio_position(y_pos)
        xy_pos = torch.concat([x, y_pos], dim=1)
        xy_dec, _ = self.nar_decoder(
            (xy_pos, self.nar_stage_embeddings[nar_stage - 1].weight),
            src_key_padding_mask=self.xy_padding_mask,
        )
        xy_dec = xy_dec[:, x_lens.max() + prefix_len :]
        if self.prefix_mode == 4:
            prefix_len = 0
        logits = self.nar_predict_layers[nar_stage - 1](xy_dec).permute(0, 2, 1)

        total_length = (y_lens).sum().type(torch.float32)
        nar_loss = F.cross_entropy(
            logits,
            targets,
            ignore_index=self.audio_token_num,
            reduction=reduction,
        ) * (total_length / (total_length - prefix_len * x.shape[0]))
        nar_metrics = (
            self.nar_accuracy_metric(
                F.pad(
                    logits.detach(),
                    (0, 0, 0, 1, 0, 0),
                    value=logits.min().cpu().item(),
                ),
                targets,
            ).item()
            * total_length
        )
        return nar_loss, nar_metrics

    def inference(
        self,
        x: torch.Tensor,
        x_lens: torch.Tensor,
        y: torch.Tensor,
        enroll_x_lens: torch.Tensor,
        top_k: int = -100,
        temperature: float = 1.0,
    ) -> torch.Tensor:
        """
        Args:
          x:
            A 2-D tensor of shape (1, S).
          x_lens:
            A 1-D tensor of shape (1,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (1, T, 8).
          top_k: (`optional`) int
            The number of highest probability tokens to keep for top-k-filtering. Default to -100.
          temperature: (`optional`) float
            The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
        Returns:
          Return the predicted audio code matrix.
        """
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3, y.shape
        assert y.shape[0] == 1, y.shape

        assert torch.all(x_lens > 0)

        text = x
        x = self.ar_text_embedding(text)
        x = self.ar_text_prenet(x)
        x = self.ar_text_position(x)

        text_len = x_lens.max()
        prompts = y
        prefix_len = y.shape[1]

        # AR Decoder
        y = prompts[..., 0]
        if self.ar_audio_prepend_bos:
            y = F.pad(y, (1, 0), value=self.audio_token_num + 1)

        x_len = x_lens.max()
        x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)

        while True:
            y_emb = self.ar_audio_embedding(y)
            y_emb = self.ar_audio_prenet(y_emb)
            y_pos = self.ar_audio_position(y_emb)
            xy_pos = torch.concat([x, y_pos], dim=1)

            y_len = y.shape[1]
            x_attn_mask_pad = F.pad(
                x_attn_mask,
                (0, y_len),
                value=True,
            )
            y_attn_mask = F.pad(
                torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
                (x_len, 0),
                value=False,
            )
            xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
                y.device
            )

            xy_dec, _ = self.ar_decoder(
                (xy_pos, None),
                mask=xy_attn_mask,
            )
            logits = self.ar_predict_layer(xy_dec[:, -1])
            samples = topk_sampling(
                logits, top_k=top_k, top_p=1.0, temperature=temperature
            )

            if (
                torch.argmax(logits, dim=-1)[0] == self.audio_token_num
                or samples[0, 0] == self.audio_token_num
                or (y.shape[1] - prompts.shape[1]) > x_lens.max() * 16
            ):
                if prompts.shape[1] == y.shape[1]:
                    raise SyntaxError("well trained model shouldn't reach here.")

                break

            y = torch.concat([y, samples], dim=1)

        codes = [y[:, prefix_len + int(self.ar_audio_prepend_bos) :]]
        if self.num_quantizers == 1:
            return torch.stack(codes, dim=-1)

        # Non-AR Decoders
        y_emb = self.nar_audio_embeddings[0](y[:, int(self.ar_audio_prepend_bos) :])

        if self.prefix_mode in [2, 4]:
            enrolled_len = enroll_x_lens.max().item()
            # SOS + Synthesis Text + EOS
            text = torch.concat(
                [
                    text[:, :1],
                    text[:, enrolled_len - 1 :],
                ],
                dim=1,
            )
            text_len = text_len - (enrolled_len - 2)
            assert text.shape[0] == 1

        x = self.nar_text_embedding(text)
        x = self.nar_text_prenet(x)
        x = self.nar_text_position(x)

        if self.prefix_mode == 0:
            for i, (predict_layer, embedding_layer) in enumerate(
                zip(
                    self.nar_predict_layers,
                    self.nar_audio_embeddings[1:],
                )
            ):
                y_pos = self.nar_audio_prenet(y_emb)
                y_pos = self.nar_audio_position(y_pos)
                xy_pos = torch.concat([x, y_pos], dim=1)

                xy_dec, _ = self.nar_decoder(
                    (xy_pos, self.nar_stage_embeddings[i].weight)
                )
                logits = predict_layer(xy_dec[:, text_len + prefix_len :])

                samples = torch.argmax(logits, dim=-1)
                codes.append(samples)

                if i < self.num_quantizers - 2:
                    y_emb[:, :prefix_len] += embedding_layer(prompts[..., i + 1])
                    y_emb[:, prefix_len:] += embedding_layer(samples)
        else:
            for j in range(1, self.num_quantizers):
                y_emb[:, :prefix_len] += self.nar_audio_embeddings[j](prompts[..., j])

            for i, (predict_layer, embedding_layer) in enumerate(
                zip(
                    self.nar_predict_layers,
                    self.nar_audio_embeddings[1:],
                )
            ):
                y_pos = self.nar_audio_prenet(y_emb)
                y_pos = self.nar_audio_position(y_pos)
                xy_pos = torch.concat([x, y_pos], dim=1)

                xy_dec, _ = self.nar_decoder(
                    (xy_pos, self.nar_stage_embeddings[i].weight)
                )
                logits = predict_layer(xy_dec[:, text_len + prefix_len :])

                samples = torch.argmax(logits, dim=-1)
                codes.append(samples)

                if i < self.num_quantizers - 2:
                    y_emb[:, prefix_len:] += embedding_layer(samples)

        assert len(codes) == self.num_quantizers
        return torch.stack(codes, dim=-1)

    def continual(
        self,
        x: torch.Tensor,
        x_lens: torch.Tensor,
        y: torch.Tensor,
    ) -> torch.Tensor:
        """
        Args:
          x:
            A 2-D tensor of shape (1, S).
          x_lens:
            A 1-D tensor of shape (1,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (1, T, 8).
        Returns:
          Return the predicted audio code matrix.
        """
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3, y.shape
        assert y.shape[0] == 1, y.shape

        assert torch.all(x_lens > 0)
        assert self.num_quantizers == 8

        text = x
        x = self.ar_text_embedding(text)
        x = self.ar_text_prenet(x)
        x = self.ar_text_position(x)

        text_len = x_lens.max()

        prefix_len = min(int(y.shape[1] * 0.5), 3 * 75)

        # AR Decoder
        prompts = y[:, :prefix_len]

        codes = [y[:, prefix_len:, 0]]
        # Non-AR Decoders
        x = self.nar_text_embedding(text)
        x = self.nar_text_prenet(x)
        x = self.nar_text_position(x)

        y_emb = self.nar_audio_embeddings[0](y[..., 0])

        if self.prefix_mode == 0:
            for i, (predict_layer, embedding_layer) in enumerate(
                zip(
                    self.nar_predict_layers,
                    self.nar_audio_embeddings[1:],
                )
            ):
                y_pos = self.nar_audio_position(y_emb)
                y_pos = self.nar_audio_prenet(y_pos)
                xy_pos = torch.concat([x, y_pos], dim=1)

                xy_dec, _ = self.nar_decoder(
                    (xy_pos, self.nar_stage_embeddings[i].weight)
                )
                logits = predict_layer(xy_dec[:, text_len + prefix_len :])

                samples = torch.argmax(logits, dim=-1)
                codes.append(samples)

                if i < 6:
                    y_emb[:, :prefix_len] += embedding_layer(prompts[..., i + 1])
                    y_emb[:, prefix_len:] += embedding_layer(samples)
        else:
            for j in range(1, 8):
                y_emb[:, :prefix_len] += self.nar_audio_embeddings[j](prompts[..., j])

            for i, (predict_layer, embedding_layer) in enumerate(
                zip(
                    self.nar_predict_layers,
                    self.nar_audio_embeddings[1:],
                )
            ):
                y_pos = self.nar_audio_prenet(y_emb)
                y_pos = self.nar_audio_position(y_pos)
                xy_pos = torch.concat([x, y_pos], dim=1)

                xy_dec, _ = self.nar_decoder(
                    (xy_pos, self.nar_stage_embeddings[i].weight)
                )
                logits = predict_layer(xy_dec[:, text_len + prefix_len :])

                samples = torch.argmax(logits, dim=-1)
                codes.append(samples)

                if i < 6:
                    y_emb[:, prefix_len:] += embedding_layer(samples)

        assert len(codes) == 8
        return torch.stack(codes, dim=-1)

    def stage_parameters(self, stage: int = 1) -> Iterator[nn.Parameter]:
        assert stage > 0
        if stage == 1:
            for name, param in self.named_parameters():
                if name.startswith("ar_"):
                    yield param

        if stage == 2:
            for name, param in self.named_parameters():
                if name.startswith("nar_"):
                    yield param

    def stage_named_parameters(
        self, stage: int = 1
    ) -> Iterator[Tuple[str, nn.Parameter]]:
        assert stage > 0
        if stage == 1:
            for pair in self.named_parameters():
                if pair[0].startswith("ar_"):
                    yield pair

        if stage == 2:
            for pair in self.named_parameters():
                if pair[0].startswith("nar_"):
                    yield pair

    def pad_y_eos(self, y, y_mask_int, eos_id):
        targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
            y_mask_int, (0, 1), value=1
        )
        if self.ar_audio_prepend_bos:
            return (
                F.pad(targets[:, :-1], (1, 0), value=self.audio_token_num + 1),
                targets,
            )

        return targets[:, :-1], targets[:, 1:]

    def _prepare_prompts(self, y, y_lens, codes, nar_stage, y_prompts_codes):
        # 5.1 For the NAR acoustic prompt tokens, we select a random segment waveform of 3 seconds
        # from the same utterance.
        # We implement this differently.
        if self.prefix_mode == 0:
            # no prefix
            prefix_len = 0
            y_emb = self.nar_audio_embeddings[0](y)
            for j in range(1, nar_stage):
                # Formula (4) (5)
                y_emb = y_emb + self.nar_audio_embeddings[j](codes[..., j])
        elif self.prefix_mode == 1:
            # prefix at begining
            int_low = (0.25 * y_lens.min()).type(torch.int64).item()
            prefix_len = torch.randint(int_low, int_low * 2, size=()).item()
            prefix_len = min(prefix_len, 225)  # 24000/320 * 3s = 225 frames

            y_prompts = self.nar_audio_embeddings[0](y[:, :prefix_len])
            y_emb = self.nar_audio_embeddings[0](y[:, prefix_len:])
            for j in range(1, self.num_quantizers):
                y_prompts += self.nar_audio_embeddings[j](codes[:, :prefix_len, j])
                if j < nar_stage:
                    y_emb += self.nar_audio_embeddings[j](codes[:, prefix_len:, j])
            y_emb = torch.concat([y_prompts, y_emb], axis=1)
        elif self.prefix_mode in [2, 4]:
            if self.prefix_mode == 2:
                # random prefix
                prefix_len = min(225, int(0.25 * y_lens.min().item()))

                y_prompts_codes = []
                for b in range(codes.shape[0]):
                    start = self.rng.randint(0, y_lens[b].item() - prefix_len)
                    y_prompts_codes.append(
                        torch.clone(codes[b, start : start + prefix_len])
                    )
                    codes[b, start : start + prefix_len, nar_stage] = NUM_AUDIO_TOKENS
                y_prompts_codes = torch.stack(y_prompts_codes, dim=0)
            else:
                prefix_len = y_prompts_codes.shape[1]

            y_prompts = self.nar_audio_embeddings[0](y_prompts_codes[..., 0])
            y_emb = self.nar_audio_embeddings[0](y)
            for j in range(1, self.num_quantizers):
                y_prompts += self.nar_audio_embeddings[j](y_prompts_codes[..., j])
                if j < nar_stage:
                    y_emb += self.nar_audio_embeddings[j](codes[..., j])
            y_emb = torch.concat([y_prompts, y_emb], axis=1)
        else:
            raise ValueError

        return y_emb, prefix_len