Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,816 Bytes
5095cf5 7ee3434 386bae1 7ee3434 84137be 7ee3434 47b2b81 7ee3434 8695770 7ee3434 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import spaces
import gradio as gr
import torch
import safetensors
from huggingface_hub import hf_hub_download
import soundfile as sf
import os
import numpy as np
import librosa
from models.codec.kmeans.repcodec_model import RepCodec
from models.tts.maskgct.maskgct_s2a import MaskGCT_S2A
from models.tts.maskgct.maskgct_t2s import MaskGCT_T2S
from models.codec.amphion_codec.codec import CodecEncoder, CodecDecoder
from transformers import Wav2Vec2BertModel
from utils.util import load_config
from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p
from transformers import SeamlessM4TFeatureExtractor
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def g2p_(text, language):
if language in ["zh", "en"]:
return chn_eng_g2p(text)
else:
return g2p(text, sentence=None, language=language)
def build_t2s_model(cfg, device):
t2s_model = MaskGCT_T2S(cfg=cfg)
t2s_model.eval()
t2s_model.to(device)
return t2s_model
def build_s2a_model(cfg, device):
soundstorm_model = MaskGCT_S2A(cfg=cfg)
soundstorm_model.eval()
soundstorm_model.to(device)
return soundstorm_model
def build_semantic_model(device):
semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
semantic_model.eval()
semantic_model.to(device)
stat_mean_var = torch.load("./models/tts/maskgct/ckpt/wav2vec2bert_stats.pt")
semantic_mean = stat_mean_var["mean"]
semantic_std = torch.sqrt(stat_mean_var["var"])
semantic_mean = semantic_mean.to(device)
semantic_std = semantic_std.to(device)
return semantic_model, semantic_mean, semantic_std
def build_semantic_codec(cfg, device):
semantic_codec = RepCodec(cfg=cfg)
semantic_codec.eval()
semantic_codec.to(device)
return semantic_codec
def build_acoustic_codec(cfg, device):
codec_encoder = CodecEncoder(cfg=cfg.encoder)
codec_decoder = CodecDecoder(cfg=cfg.decoder)
codec_encoder.eval()
codec_decoder.eval()
codec_encoder.to(device)
codec_decoder.to(device)
return codec_encoder, codec_decoder
@torch.no_grad()
def extract_features(speech, processor):
inputs = processor(speech, sampling_rate=16000, return_tensors="pt")
input_features = inputs["input_features"][0]
attention_mask = inputs["attention_mask"][0]
return input_features, attention_mask
@torch.no_grad()
def extract_semantic_code(semantic_mean, semantic_std, input_features, attention_mask):
vq_emb = semantic_model(
input_features=input_features,
attention_mask=attention_mask,
output_hidden_states=True,
)
feat = vq_emb.hidden_states[17] # (B, T, C)
feat = (feat - semantic_mean.to(feat)) / semantic_std.to(feat)
semantic_code, rec_feat = semantic_codec.quantize(feat) # (B, T)
return semantic_code, rec_feat
@torch.no_grad()
def extract_acoustic_code(speech):
vq_emb = codec_encoder(speech.unsqueeze(1))
_, vq, _, _, _ = codec_decoder.quantizer(vq_emb)
acoustic_code = vq.permute(1, 2, 0)
return acoustic_code
@torch.no_grad()
def text2semantic(
device,
prompt_speech,
prompt_text,
prompt_language,
target_text,
target_language,
target_len=None,
n_timesteps=50,
cfg=2.5,
rescale_cfg=0.75,
):
prompt_phone_id = g2p_(prompt_text, prompt_language)[1]
target_phone_id = g2p_(target_text, target_language)[1]
if target_len is None:
target_len = int(
(len(prompt_speech) * len(target_phone_id) / len(prompt_phone_id))
/ 16000
* 50
)
else:
target_len = int(target_len * 50)
prompt_phone_id = torch.tensor(prompt_phone_id, dtype=torch.long).to(device)
target_phone_id = torch.tensor(target_phone_id, dtype=torch.long).to(device)
phone_id = torch.cat([prompt_phone_id, target_phone_id])
input_fetures, attention_mask = extract_features(prompt_speech, processor)
input_fetures = input_fetures.unsqueeze(0).to(device)
attention_mask = attention_mask.unsqueeze(0).to(device)
semantic_code, _ = extract_semantic_code(
semantic_mean, semantic_std, input_fetures, attention_mask
)
predict_semantic = t2s_model.reverse_diffusion(
semantic_code[:, :],
target_len,
phone_id.unsqueeze(0),
n_timesteps=n_timesteps,
cfg=cfg,
rescale_cfg=rescale_cfg,
)
combine_semantic_code = torch.cat([semantic_code[:, :], predict_semantic], dim=-1)
prompt_semantic_code = semantic_code
return combine_semantic_code, prompt_semantic_code
@torch.no_grad()
def semantic2acoustic(
device,
combine_semantic_code,
acoustic_code,
n_timesteps=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
cfg=2.5,
rescale_cfg=0.75,
):
semantic_code = combine_semantic_code
cond = s2a_model_1layer.cond_emb(semantic_code)
prompt = acoustic_code[:, :, :]
predict_1layer = s2a_model_1layer.reverse_diffusion(
cond=cond,
prompt=prompt,
temp=1.5,
filter_thres=0.98,
n_timesteps=n_timesteps[:1],
cfg=cfg,
rescale_cfg=rescale_cfg,
)
cond = s2a_model_full.cond_emb(semantic_code)
prompt = acoustic_code[:, :, :]
predict_full = s2a_model_full.reverse_diffusion(
cond=cond,
prompt=prompt,
temp=1.5,
filter_thres=0.98,
n_timesteps=n_timesteps,
cfg=cfg,
rescale_cfg=rescale_cfg,
gt_code=predict_1layer,
)
vq_emb = codec_decoder.vq2emb(predict_full.permute(2, 0, 1), n_quantizers=12)
recovered_audio = codec_decoder(vq_emb)
prompt_vq_emb = codec_decoder.vq2emb(prompt.permute(2, 0, 1), n_quantizers=12)
recovered_prompt_audio = codec_decoder(prompt_vq_emb)
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy()
recovered_audio = recovered_audio[0][0].cpu().numpy()
combine_audio = np.concatenate([recovered_prompt_audio, recovered_audio])
return combine_audio, recovered_audio
# Load the model and checkpoints
def load_models():
cfg_path = "./models/tts/maskgct/config/maskgct.json"
cfg = load_config(cfg_path)
semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
codec_encoder, codec_decoder = build_acoustic_codec(
cfg.model.acoustic_codec, device
)
t2s_model = build_t2s_model(cfg.model.t2s_model, device)
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)
# Download checkpoints
semantic_code_ckpt = hf_hub_download(
"amphion/MaskGCT", filename="semantic_codec/model.safetensors"
)
codec_encoder_ckpt = hf_hub_download(
"amphion/MaskGCT", filename="acoustic_codec/model.safetensors"
)
codec_decoder_ckpt = hf_hub_download(
"amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors"
)
t2s_model_ckpt = hf_hub_download(
"amphion/MaskGCT", filename="t2s_model/model.safetensors"
)
s2a_1layer_ckpt = hf_hub_download(
"amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors"
)
s2a_full_ckpt = hf_hub_download(
"amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors"
)
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)
return (
semantic_model,
semantic_mean,
semantic_std,
semantic_codec,
codec_encoder,
codec_decoder,
t2s_model,
s2a_model_1layer,
s2a_model_full,
)
@torch.no_grad()
def maskgct_inference(
prompt_speech_path,
prompt_text,
target_text,
language="en",
target_language="en",
target_len=None,
n_timesteps=25,
cfg=2.5,
rescale_cfg=0.75,
n_timesteps_s2a=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
cfg_s2a=2.5,
rescale_cfg_s2a=0.75,
device=torch.device("cuda:5"),
):
speech_16k = librosa.load(prompt_speech_path, sr=16000)[0]
speech = librosa.load(prompt_speech_path, sr=24000)[0]
combine_semantic_code, _ = text2semantic(
device,
speech_16k,
prompt_text,
language,
target_text,
target_language,
target_len,
n_timesteps,
cfg,
rescale_cfg,
)
acoustic_code = extract_acoustic_code(torch.tensor(speech).unsqueeze(0).to(device))
_, recovered_audio = semantic2acoustic(
device,
combine_semantic_code,
acoustic_code,
n_timesteps=n_timesteps_s2a,
cfg=cfg_s2a,
rescale_cfg=rescale_cfg_s2a,
)
return recovered_audio
@spaces.GPU
def inference(
prompt_wav,
prompt_text,
target_text,
target_len,
n_timesteps,
language,
target_language,
):
save_path = "./output/output.wav"
os.makedirs("./output", exist_ok=True)
recovered_audio = maskgct_inference(
prompt_wav,
prompt_text,
target_text,
language,
target_language,
target_len=target_len,
n_timesteps=int(n_timesteps),
device=device,
)
sf.write(save_path, recovered_audio, 24000)
return save_path
# Load models once
(
semantic_model,
semantic_mean,
semantic_std,
semantic_codec,
codec_encoder,
codec_decoder,
t2s_model,
s2a_model_1layer,
s2a_model_full,
) = load_models()
# Language list
language_list = ["en", "zh", "ja", "ko", "fr", "de"]
# Gradio interface
iface = gr.Interface(
fn=inference,
inputs=[
gr.Audio(label="Upload Prompt Wav", type="filepath"),
gr.Textbox(label="Prompt Text"),
gr.Textbox(label="Target Text"),
gr.Number(
label="Target Duration (in seconds)", value=None
), # Removed 'optional=True'
gr.Slider(
label="Number of Timesteps", minimum=15, maximum=100, value=25, step=1
),
gr.Dropdown(label="Language", choices=language_list, value="en"),
gr.Dropdown(label="Target Language", choices=language_list, value="en"),
],
outputs=gr.Audio(label="Generated Audio"),
title="MaskGCT TTS Demo",
description="Generate speech from text using the MaskGCT model.",
)
# Launch the interface
iface.launch(allowed_paths=["./output"])
|