Spaces:
Running
Running
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
from __future__ import print_function | |
import argparse | |
import os | |
import copy | |
import sys | |
import torch | |
import yaml | |
import numpy as np | |
from wenet.utils.checkpoint import load_checkpoint | |
from wenet.utils.init_model import init_model | |
try: | |
import onnx | |
import onnxruntime | |
from onnxruntime.quantization import quantize_dynamic, QuantType | |
except ImportError: | |
print("Please install onnx and onnxruntime!") | |
sys.exit(1) | |
def get_args(): | |
parser = argparse.ArgumentParser(description="export your script model") | |
parser.add_argument("--config", required=True, help="config file") | |
parser.add_argument("--checkpoint", required=True, help="checkpoint model") | |
parser.add_argument("--output_dir", required=True, help="output directory") | |
parser.add_argument( | |
"--chunk_size", required=True, type=int, help="decoding chunk size" | |
) | |
parser.add_argument( | |
"--num_decoding_left_chunks", required=True, type=int, help="cache chunks" | |
) | |
parser.add_argument( | |
"--reverse_weight", | |
default=0.5, | |
type=float, | |
help="reverse_weight in attention_rescoing", | |
) | |
args = parser.parse_args() | |
return args | |
def to_numpy(tensor): | |
if tensor.requires_grad: | |
return tensor.detach().cpu().numpy() | |
else: | |
return tensor.cpu().numpy() | |
def print_input_output_info(onnx_model, name, prefix="\t\t"): | |
input_names = [node.name for node in onnx_model.graph.input] | |
input_shapes = [ | |
[d.dim_value for d in node.type.tensor_type.shape.dim] | |
for node in onnx_model.graph.input | |
] | |
output_names = [node.name for node in onnx_model.graph.output] | |
output_shapes = [ | |
[d.dim_value for d in node.type.tensor_type.shape.dim] | |
for node in onnx_model.graph.output | |
] | |
print("{}{} inputs : {}".format(prefix, name, input_names)) | |
print("{}{} input shapes : {}".format(prefix, name, input_shapes)) | |
print("{}{} outputs: {}".format(prefix, name, output_names)) | |
print("{}{} output shapes : {}".format(prefix, name, output_shapes)) | |
def export_encoder(asr_model, args): | |
print("Stage-1: export encoder") | |
encoder = asr_model.encoder | |
encoder.forward = encoder.forward_chunk | |
encoder_outpath = os.path.join(args["output_dir"], "encoder.onnx") | |
print("\tStage-1.1: prepare inputs for encoder") | |
chunk = torch.randn((args["batch"], args["decoding_window"], args["feature_size"])) | |
offset = 0 | |
# NOTE(xcsong): The uncertainty of `next_cache_start` only appears | |
# in the first few chunks, this is caused by dynamic att_cache shape, i,e | |
# (0, 0, 0, 0) for 1st chunk and (elayers, head, ?, d_k*2) for subsequent | |
# chunks. One way to ease the ONNX export is to keep `next_cache_start` | |
# as a fixed value. To do this, for the **first** chunk, if | |
# left_chunks > 0, we feed real cache & real mask to the model, otherwise | |
# fake cache & fake mask. In this way, we get: | |
# 1. 16/-1 mode: next_cache_start == 0 for all chunks | |
# 2. 16/4 mode: next_cache_start == chunk_size for all chunks | |
# 3. 16/0 mode: next_cache_start == chunk_size for all chunks | |
# 4. -1/-1 mode: next_cache_start == 0 for all chunks | |
# NO MORE DYNAMIC CHANGES!! | |
# | |
# NOTE(Mddct): We retain the current design for the convenience of supporting some | |
# inference frameworks without dynamic shapes. If you're interested in all-in-one | |
# model that supports different chunks please see: | |
# https://github.com/wenet-e2e/wenet/pull/1174 | |
if args["left_chunks"] > 0: # 16/4 | |
required_cache_size = args["chunk_size"] * args["left_chunks"] | |
offset = required_cache_size | |
# Real cache | |
att_cache = torch.zeros( | |
( | |
args["num_blocks"], | |
args["head"], | |
required_cache_size, | |
args["output_size"] // args["head"] * 2, | |
) | |
) | |
# Real mask | |
att_mask = torch.ones( | |
(args["batch"], 1, required_cache_size + args["chunk_size"]), | |
dtype=torch.bool, | |
) | |
att_mask[:, :, :required_cache_size] = 0 | |
elif args["left_chunks"] <= 0: # 16/-1, -1/-1, 16/0 | |
required_cache_size = -1 if args["left_chunks"] < 0 else 0 | |
# Fake cache | |
att_cache = torch.zeros( | |
( | |
args["num_blocks"], | |
args["head"], | |
0, | |
args["output_size"] // args["head"] * 2, | |
) | |
) | |
# Fake mask | |
att_mask = torch.ones((0, 0, 0), dtype=torch.bool) | |
cnn_cache = torch.zeros( | |
( | |
args["num_blocks"], | |
args["batch"], | |
args["output_size"], | |
args["cnn_module_kernel"] - 1, | |
) | |
) | |
inputs = (chunk, offset, required_cache_size, att_cache, cnn_cache, att_mask) | |
print( | |
"\t\tchunk.size(): {}\n".format(chunk.size()), | |
"\t\toffset: {}\n".format(offset), | |
"\t\trequired_cache: {}\n".format(required_cache_size), | |
"\t\tatt_cache.size(): {}\n".format(att_cache.size()), | |
"\t\tcnn_cache.size(): {}\n".format(cnn_cache.size()), | |
"\t\tatt_mask.size(): {}\n".format(att_mask.size()), | |
) | |
print("\tStage-1.2: torch.onnx.export") | |
dynamic_axes = { | |
"chunk": {1: "T"}, | |
"att_cache": {2: "T_CACHE"}, | |
"att_mask": {2: "T_ADD_T_CACHE"}, | |
"output": {1: "T"}, | |
"r_att_cache": {2: "T_CACHE"}, | |
} | |
# NOTE(xcsong): We keep dynamic axes even if in 16/4 mode, this is | |
# to avoid padding the last chunk (which usually contains less | |
# frames than required). For users who want static axes, just pop | |
# out specific axis. | |
# if args['chunk_size'] > 0: # 16/4, 16/-1, 16/0 | |
# dynamic_axes.pop('chunk') | |
# dynamic_axes.pop('output') | |
# if args['left_chunks'] >= 0: # 16/4, 16/0 | |
# # NOTE(xsong): since we feed real cache & real mask into the | |
# # model when left_chunks > 0, the shape of cache will never | |
# # be changed. | |
# dynamic_axes.pop('att_cache') | |
# dynamic_axes.pop('r_att_cache') | |
torch.onnx.export( | |
encoder, | |
inputs, | |
encoder_outpath, | |
opset_version=13, | |
export_params=True, | |
do_constant_folding=True, | |
input_names=[ | |
"chunk", | |
"offset", | |
"required_cache_size", | |
"att_cache", | |
"cnn_cache", | |
"att_mask", | |
], | |
output_names=["output", "r_att_cache", "r_cnn_cache"], | |
dynamic_axes=dynamic_axes, | |
verbose=False, | |
) | |
onnx_encoder = onnx.load(encoder_outpath) | |
for k, v in args.items(): | |
meta = onnx_encoder.metadata_props.add() | |
meta.key, meta.value = str(k), str(v) | |
onnx.checker.check_model(onnx_encoder) | |
onnx.helper.printable_graph(onnx_encoder.graph) | |
# NOTE(xcsong): to add those metadatas we need to reopen | |
# the file and resave it. | |
onnx.save(onnx_encoder, encoder_outpath) | |
print_input_output_info(onnx_encoder, "onnx_encoder") | |
# Dynamic quantization | |
model_fp32 = encoder_outpath | |
model_quant = os.path.join(args["output_dir"], "encoder.quant.onnx") | |
quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
print("\t\tExport onnx_encoder, done! see {}".format(encoder_outpath)) | |
print("\tStage-1.3: check onnx_encoder and torch_encoder") | |
torch_output = [] | |
torch_chunk = copy.deepcopy(chunk) | |
torch_offset = copy.deepcopy(offset) | |
torch_required_cache_size = copy.deepcopy(required_cache_size) | |
torch_att_cache = copy.deepcopy(att_cache) | |
torch_cnn_cache = copy.deepcopy(cnn_cache) | |
torch_att_mask = copy.deepcopy(att_mask) | |
for i in range(10): | |
print( | |
"\t\ttorch chunk-{}: {}, offset: {}, att_cache: {}," | |
" cnn_cache: {}, att_mask: {}".format( | |
i, | |
list(torch_chunk.size()), | |
torch_offset, | |
list(torch_att_cache.size()), | |
list(torch_cnn_cache.size()), | |
list(torch_att_mask.size()), | |
) | |
) | |
# NOTE(xsong): att_mask of the first few batches need changes if | |
# we use 16/4 mode. | |
if args["left_chunks"] > 0: # 16/4 | |
torch_att_mask[:, :, -(args["chunk_size"] * (i + 1)) :] = 1 | |
out, torch_att_cache, torch_cnn_cache = encoder( | |
torch_chunk, | |
torch_offset, | |
torch_required_cache_size, | |
torch_att_cache, | |
torch_cnn_cache, | |
torch_att_mask, | |
) | |
torch_output.append(out) | |
torch_offset += out.size(1) | |
torch_output = torch.cat(torch_output, dim=1) | |
onnx_output = [] | |
onnx_chunk = to_numpy(chunk) | |
onnx_offset = np.array((offset)).astype(np.int64) | |
onnx_required_cache_size = np.array((required_cache_size)).astype(np.int64) | |
onnx_att_cache = to_numpy(att_cache) | |
onnx_cnn_cache = to_numpy(cnn_cache) | |
onnx_att_mask = to_numpy(att_mask) | |
ort_session = onnxruntime.InferenceSession(encoder_outpath) | |
input_names = [node.name for node in onnx_encoder.graph.input] | |
for i in range(10): | |
print( | |
"\t\tonnx chunk-{}: {}, offset: {}, att_cache: {}," | |
" cnn_cache: {}, att_mask: {}".format( | |
i, | |
onnx_chunk.shape, | |
onnx_offset, | |
onnx_att_cache.shape, | |
onnx_cnn_cache.shape, | |
onnx_att_mask.shape, | |
) | |
) | |
# NOTE(xsong): att_mask of the first few batches need changes if | |
# we use 16/4 mode. | |
if args["left_chunks"] > 0: # 16/4 | |
onnx_att_mask[:, :, -(args["chunk_size"] * (i + 1)) :] = 1 | |
ort_inputs = { | |
"chunk": onnx_chunk, | |
"offset": onnx_offset, | |
"required_cache_size": onnx_required_cache_size, | |
"att_cache": onnx_att_cache, | |
"cnn_cache": onnx_cnn_cache, | |
"att_mask": onnx_att_mask, | |
} | |
# NOTE(xcsong): If we use 16/-1, -1/-1 or 16/0 mode, `next_cache_start` | |
# will be hardcoded to 0 or chunk_size by ONNX, thus | |
# required_cache_size and att_mask are no more needed and they will | |
# be removed by ONNX automatically. | |
for k in list(ort_inputs): | |
if k not in input_names: | |
ort_inputs.pop(k) | |
ort_outs = ort_session.run(None, ort_inputs) | |
onnx_att_cache, onnx_cnn_cache = ort_outs[1], ort_outs[2] | |
onnx_output.append(ort_outs[0]) | |
onnx_offset += ort_outs[0].shape[1] | |
onnx_output = np.concatenate(onnx_output, axis=1) | |
np.testing.assert_allclose( | |
to_numpy(torch_output), onnx_output, rtol=1e-03, atol=1e-05 | |
) | |
meta = ort_session.get_modelmeta() | |
print("\t\tcustom_metadata_map={}".format(meta.custom_metadata_map)) | |
print("\t\tCheck onnx_encoder, pass!") | |
def export_ctc(asr_model, args): | |
print("Stage-2: export ctc") | |
ctc = asr_model.ctc | |
ctc.forward = ctc.log_softmax | |
ctc_outpath = os.path.join(args["output_dir"], "ctc.onnx") | |
print("\tStage-2.1: prepare inputs for ctc") | |
hidden = torch.randn( | |
( | |
args["batch"], | |
args["chunk_size"] if args["chunk_size"] > 0 else 16, | |
args["output_size"], | |
) | |
) | |
print("\tStage-2.2: torch.onnx.export") | |
dynamic_axes = {"hidden": {1: "T"}, "probs": {1: "T"}} | |
torch.onnx.export( | |
ctc, | |
hidden, | |
ctc_outpath, | |
opset_version=13, | |
export_params=True, | |
do_constant_folding=True, | |
input_names=["hidden"], | |
output_names=["probs"], | |
dynamic_axes=dynamic_axes, | |
verbose=False, | |
) | |
onnx_ctc = onnx.load(ctc_outpath) | |
for k, v in args.items(): | |
meta = onnx_ctc.metadata_props.add() | |
meta.key, meta.value = str(k), str(v) | |
onnx.checker.check_model(onnx_ctc) | |
onnx.helper.printable_graph(onnx_ctc.graph) | |
onnx.save(onnx_ctc, ctc_outpath) | |
print_input_output_info(onnx_ctc, "onnx_ctc") | |
# Dynamic quantization | |
model_fp32 = ctc_outpath | |
model_quant = os.path.join(args["output_dir"], "ctc.quant.onnx") | |
quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
print("\t\tExport onnx_ctc, done! see {}".format(ctc_outpath)) | |
print("\tStage-2.3: check onnx_ctc and torch_ctc") | |
torch_output = ctc(hidden) | |
ort_session = onnxruntime.InferenceSession(ctc_outpath) | |
onnx_output = ort_session.run(None, {"hidden": to_numpy(hidden)}) | |
np.testing.assert_allclose( | |
to_numpy(torch_output), onnx_output[0], rtol=1e-03, atol=1e-05 | |
) | |
print("\t\tCheck onnx_ctc, pass!") | |
def export_decoder(asr_model, args): | |
print("Stage-3: export decoder") | |
decoder = asr_model | |
# NOTE(lzhin): parameters of encoder will be automatically removed | |
# since they are not used during rescoring. | |
decoder.forward = decoder.forward_attention_decoder | |
decoder_outpath = os.path.join(args["output_dir"], "decoder.onnx") | |
print("\tStage-3.1: prepare inputs for decoder") | |
# hardcode time->200 nbest->10 len->20, they are dynamic axes. | |
encoder_out = torch.randn((1, 200, args["output_size"])) | |
hyps = torch.randint(low=0, high=args["vocab_size"], size=[10, 20]) | |
hyps[:, 0] = args["vocab_size"] - 1 # <sos> | |
hyps_lens = torch.randint(low=15, high=21, size=[10]) | |
print("\tStage-3.2: torch.onnx.export") | |
dynamic_axes = { | |
"hyps": {0: "NBEST", 1: "L"}, | |
"hyps_lens": {0: "NBEST"}, | |
"encoder_out": {1: "T"}, | |
"score": {0: "NBEST", 1: "L"}, | |
"r_score": {0: "NBEST", 1: "L"}, | |
} | |
inputs = (hyps, hyps_lens, encoder_out, args["reverse_weight"]) | |
torch.onnx.export( | |
decoder, | |
inputs, | |
decoder_outpath, | |
opset_version=13, | |
export_params=True, | |
do_constant_folding=True, | |
input_names=["hyps", "hyps_lens", "encoder_out", "reverse_weight"], | |
output_names=["score", "r_score"], | |
dynamic_axes=dynamic_axes, | |
verbose=False, | |
) | |
onnx_decoder = onnx.load(decoder_outpath) | |
for k, v in args.items(): | |
meta = onnx_decoder.metadata_props.add() | |
meta.key, meta.value = str(k), str(v) | |
onnx.checker.check_model(onnx_decoder) | |
onnx.helper.printable_graph(onnx_decoder.graph) | |
onnx.save(onnx_decoder, decoder_outpath) | |
print_input_output_info(onnx_decoder, "onnx_decoder") | |
model_fp32 = decoder_outpath | |
model_quant = os.path.join(args["output_dir"], "decoder.quant.onnx") | |
quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
print("\t\tExport onnx_decoder, done! see {}".format(decoder_outpath)) | |
print("\tStage-3.3: check onnx_decoder and torch_decoder") | |
torch_score, torch_r_score = decoder( | |
hyps, hyps_lens, encoder_out, args["reverse_weight"] | |
) | |
ort_session = onnxruntime.InferenceSession(decoder_outpath) | |
input_names = [node.name for node in onnx_decoder.graph.input] | |
ort_inputs = { | |
"hyps": to_numpy(hyps), | |
"hyps_lens": to_numpy(hyps_lens), | |
"encoder_out": to_numpy(encoder_out), | |
"reverse_weight": np.array((args["reverse_weight"])), | |
} | |
for k in list(ort_inputs): | |
if k not in input_names: | |
ort_inputs.pop(k) | |
onnx_output = ort_session.run(None, ort_inputs) | |
np.testing.assert_allclose( | |
to_numpy(torch_score), onnx_output[0], rtol=1e-03, atol=1e-05 | |
) | |
if args["is_bidirectional_decoder"] and args["reverse_weight"] > 0.0: | |
np.testing.assert_allclose( | |
to_numpy(torch_r_score), onnx_output[1], rtol=1e-03, atol=1e-05 | |
) | |
print("\t\tCheck onnx_decoder, pass!") | |
def main(): | |
torch.manual_seed(777) | |
args = get_args() | |
output_dir = args.output_dir | |
os.system("mkdir -p " + output_dir) | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
with open(args.config, "r") as fin: | |
configs = yaml.load(fin, Loader=yaml.FullLoader) | |
model = init_model(configs) | |
load_checkpoint(model, args.checkpoint) | |
model.eval() | |
print(model) | |
arguments = {} | |
arguments["output_dir"] = output_dir | |
arguments["batch"] = 1 | |
arguments["chunk_size"] = args.chunk_size | |
arguments["left_chunks"] = args.num_decoding_left_chunks | |
arguments["reverse_weight"] = args.reverse_weight | |
arguments["output_size"] = configs["encoder_conf"]["output_size"] | |
arguments["num_blocks"] = configs["encoder_conf"]["num_blocks"] | |
arguments["cnn_module_kernel"] = configs["encoder_conf"].get("cnn_module_kernel", 1) | |
arguments["head"] = configs["encoder_conf"]["attention_heads"] | |
arguments["feature_size"] = configs["input_dim"] | |
arguments["vocab_size"] = configs["output_dim"] | |
# NOTE(xcsong): if chunk_size == -1, hardcode to 67 | |
arguments["decoding_window"] = ( | |
(args.chunk_size - 1) * model.encoder.embed.subsampling_rate | |
+ model.encoder.embed.right_context | |
+ 1 | |
if args.chunk_size > 0 | |
else 67 | |
) | |
arguments["encoder"] = configs["encoder"] | |
arguments["decoder"] = configs["decoder"] | |
arguments["subsampling_rate"] = model.subsampling_rate() | |
arguments["right_context"] = model.right_context() | |
arguments["sos_symbol"] = model.sos_symbol() | |
arguments["eos_symbol"] = model.eos_symbol() | |
arguments["is_bidirectional_decoder"] = 1 if model.is_bidirectional_decoder() else 0 | |
# NOTE(xcsong): Please note that -1/-1 means non-streaming model! It is | |
# not a [16/4 16/-1 16/0] all-in-one model and it should not be used in | |
# streaming mode (i.e., setting chunk_size=16 in `decoder_main`). If you | |
# want to use 16/-1 or any other streaming mode in `decoder_main`, | |
# please export onnx in the same config. | |
if arguments["left_chunks"] > 0: | |
assert arguments["chunk_size"] > 0 # -1/4 not supported | |
export_encoder(model, arguments) | |
export_ctc(model, arguments) | |
export_decoder(model, arguments) | |
if __name__ == "__main__": | |
main() | |