File size: 4,947 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import json
import torchaudio
from tqdm import tqdm
from glob import glob
from collections import defaultdict

from utils.util import has_existed

def hifitts_statistics(data_dir):
    speakers = []
    distribution2books2utts = defaultdict(
        lambda:defaultdict(list)
    )
    distribution_infos = glob(data_dir + "/*.json")
    
    for distribution_info in distribution_infos:
        distribution = distribution_info.split("/")[-1].split(".")[0]
        speaker_id = distribution.split("_")[0] 
        speakers.append(speaker_id)

        with open(distribution_info, 'r', encoding='utf-8') as file:
            for line in file:
                entry = json.loads(line)
                text_normalized = entry.get("text_normalized")
                audio_path = entry.get("audio_filepath")
                book = audio_path.split("/")[-2]
                distribution2books2utts[distribution][book].append((text_normalized, audio_path))

    unique_speakers = list(set(speakers))
    unique_speakers.sort()

    print("Speakers: \n{}".format("\t".join(unique_speakers)))
    return distribution2books2utts, unique_speakers


def main(output_path, dataset_path):
    print("-" * 10)
    print("Preparing samples for hifitts...\n")

    save_dir = os.path.join(output_path, "hifitts")
    os.makedirs(save_dir, exist_ok=True)
    print('Saving to ', save_dir)
    train_output_file = os.path.join(save_dir, "train.json")
    test_output_file = os.path.join(save_dir, "test.json")
    valid_output_file = os.path.join(save_dir, "valid.json")
    singer_dict_file = os.path.join(save_dir, "singers.json")
    utt2singer_file = os.path.join(save_dir, "utt2singer")
    if has_existed(train_output_file):
        return
    utt2singer = open(utt2singer_file, "w")

    # Load
    hifitts_path = dataset_path

    distribution2books2utts, unique_speakers = hifitts_statistics(
        hifitts_path
    )
    
    train = []
    test = []
    valid = []

    train_index_count = 0
    test_index_count = 0
    valid_index_count = 0

    train_total_duration = 0
    test_total_duration = 0
    valid_total_duration = 0
    
    for distribution, books2utts in tqdm(
        distribution2books2utts.items(),
        desc=f"Distribution"
    ):
        speaker = distribution.split("_")[0]
        book_names = list(books2utts.keys())
        for chosen_book in tqdm(book_names, desc=f"chosen_book"):
            for text, utt_path in tqdm(books2utts[chosen_book], desc=f"utterance"):
                chosen_uid = utt_path.split("/")[-1].split(".")[0]
                res = {
                    "Dataset":"hifitts",
                    "Singer":speaker,
                    "Uid": "{}#{}#{}#{}".format(
                            distribution, speaker, chosen_book, chosen_uid
                        ),
                    "Text": text
                }

                res["Path"] = os.path.join(hifitts_path, utt_path)
                assert os.path.exists(res["Path"])

                waveform, sample_rate = torchaudio.load(res["Path"])
                duration = waveform.size(-1) / sample_rate
                res["Duration"] = duration

                if "train" in distribution:
                    res["index"] = train_index_count
                    train_total_duration += duration
                    train.append(res)
                    train_index_count += 1

                elif 'test' in distribution:
                    res["index"] = test_index_count
                    test_total_duration += duration
                    test.append(res)
                    test_index_count += 1
                    
                elif 'dev' in distribution:
                    res["index"] = valid_index_count
                    valid_total_duration += duration
                    valid.append(res)
                    valid_index_count += 1

                utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"]))

    print("#Train = {}, #Test = {}, #Valid = {}".format(len(train), len(test), len(valid)))
    print(
        "#Train hours= {}, #Test hours= {}, #Valid hours= {}".format(
            train_total_duration / 3600, test_total_duration / 3600, valid_total_duration / 3600
        )
    )

    # Save train.json, test.json, valid.json
    with open(train_output_file, "w") as f:
        json.dump(train, f, indent=4, ensure_ascii=False)
    with open(test_output_file, "w") as f:
        json.dump(test, f, indent=4, ensure_ascii=False)
    with open(valid_output_file, "w") as f:
        json.dump(valid, f, indent=4, ensure_ascii=False)

    # Save singers.json
    singer_lut = {name: i for i, name in enumerate(unique_speakers)}
    with open(singer_dict_file, "w") as f:
        json.dump(singer_lut, f, indent=4, ensure_ascii=False)