File size: 20,064 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import json
import os

import numpy as np
from scipy.interpolate import interp1d
from tqdm import tqdm
from sklearn.preprocessing import StandardScaler



def intersperse(lst, item):
    result = [item] * (len(lst) * 2 + 1)
    result[1::2] = lst
    return result

def load_content_feature_path(meta_data, processed_dir, feat_dir):
    utt2feat_path = {}
    for utt_info in meta_data:
        utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
        feat_path = os.path.join(
            processed_dir, utt_info["Dataset"], feat_dir, f'{utt_info["Uid"]}.npy'
        )
        utt2feat_path[utt] = feat_path

    return utt2feat_path


def load_source_content_feature_path(meta_data, feat_dir):
    utt2feat_path = {}
    for utt in meta_data:
        feat_path = os.path.join(feat_dir, f"{utt}.npy")
        utt2feat_path[utt] = feat_path

    return utt2feat_path


def get_spk_map(spk2id_path, utt2spk_path):
    utt2spk = {}
    with open(spk2id_path, "r") as spk2id_file:
        spk2id = json.load(spk2id_file)
    with open(utt2spk_path, encoding="utf-8") as f:
        for line in f.readlines():
            utt, spk = line.strip().split("\t")
            utt2spk[utt] = spk
    return spk2id, utt2spk


def get_target_f0_median(f0_dir):
    total_f0 = []
    for utt in os.listdir(f0_dir):
        if not utt.endswith(".npy"):
            continue
        f0_feat_path = os.path.join(f0_dir, utt)
        f0 = np.load(f0_feat_path)
        total_f0 += f0.tolist()

    total_f0 = np.array(total_f0)
    voiced_position = np.where(total_f0 != 0)
    return np.median(total_f0[voiced_position])


def get_conversion_f0_factor(source_f0, target_median, source_median=None):
    """Align the median between source f0 and target f0

    Note: Here we use multiplication, whose factor is target_median/source_median

    Reference: Frequency and pitch interval
    http://blog.ccyg.studio/article/be12c2ee-d47c-4098-9782-ca76da3035e4/
    """
    if source_median is None:
        voiced_position = np.where(source_f0 != 0)
        source_median = np.median(source_f0[voiced_position])
    factor = target_median / source_median
    return source_median, factor


def transpose_key(frame_pitch, trans_key):
    # Transpose by user's argument
    print("Transpose key = {} ...\n".format(trans_key))

    transed_pitch = frame_pitch * 2 ** (trans_key / 12)
    return transed_pitch


def pitch_shift_to_target(frame_pitch, target_pitch_median, source_pitch_median=None):
    # Loading F0 Base (median) and shift
    source_pitch_median, factor = get_conversion_f0_factor(
        frame_pitch, target_pitch_median, source_pitch_median
    )
    print(
        "Auto transposing: source f0 median = {:.1f}, target f0 median = {:.1f}, factor = {:.2f}".format(
            source_pitch_median, target_pitch_median, factor
        )
    )
    transed_pitch = frame_pitch * factor
    return transed_pitch


def load_frame_pitch(
    meta_data,
    processed_dir,
    pitch_dir,
    use_log_scale=False,
    return_norm=False,
    interoperate=False,
    utt2spk=None,
):
    utt2pitch = {}
    utt2uv = {}
    if utt2spk is None:
        pitch_scaler = StandardScaler()
        for utt_info in meta_data:
            utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
            pitch_path = os.path.join(
                processed_dir, utt_info["Dataset"], pitch_dir, f'{utt_info["Uid"]}.npy'
            )
            pitch = np.load(pitch_path)
            assert len(pitch) > 0
            uv = pitch != 0
            utt2uv[utt] = uv
            if use_log_scale:
                nonzero_idxes = np.where(pitch != 0)[0]
                pitch[nonzero_idxes] = np.log(pitch[nonzero_idxes])
            utt2pitch[utt] = pitch
            pitch_scaler.partial_fit(pitch.reshape(-1, 1))

        mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0]
        if return_norm:
            for utt_info in meta_data:
                utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
                pitch = utt2pitch[utt]
                normalized_pitch = (pitch - mean) / std
                utt2pitch[utt] = normalized_pitch
        pitch_statistic = {"mean": mean, "std": std}
    else:
        spk2utt = {}
        pitch_statistic = []
        for utt_info in meta_data:
            utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
            if not utt2spk[utt] in spk2utt:
                spk2utt[utt2spk[utt]] = []
            spk2utt[utt2spk[utt]].append(utt)

        for spk in spk2utt:
            pitch_scaler = StandardScaler()
            for utt in spk2utt[spk]:
                dataset = utt.split("_")[0]
                uid = "_".join(utt.split("_")[1:])
                pitch_path = os.path.join(
                    processed_dir, dataset, pitch_dir, f"{uid}.npy"
                )
                pitch = np.load(pitch_path)
                assert len(pitch) > 0
                uv = pitch != 0
                utt2uv[utt] = uv
                if use_log_scale:
                    nonzero_idxes = np.where(pitch != 0)[0]
                    pitch[nonzero_idxes] = np.log(pitch[nonzero_idxes])
                utt2pitch[utt] = pitch
                pitch_scaler.partial_fit(pitch.reshape(-1, 1))

            mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0]
            if return_norm:
                for utt in spk2utt[spk]:
                    pitch = utt2pitch[utt]
                    normalized_pitch = (pitch - mean) / std
                    utt2pitch[utt] = normalized_pitch
            pitch_statistic.append({"spk": spk, "mean": mean, "std": std})

    return utt2pitch, utt2uv, pitch_statistic


# discard
def load_phone_pitch(
    meta_data,
    processed_dir,
    pitch_dir,
    utt2dur,
    use_log_scale=False,
    return_norm=False,
    interoperate=True,
    utt2spk=None,
):
    print("Load Phone Pitch")
    utt2pitch = {}
    utt2uv = {}
    if utt2spk is None:
        pitch_scaler = StandardScaler()
        for utt_info in tqdm(meta_data):
            utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
            pitch_path = os.path.join(
                processed_dir, utt_info["Dataset"], pitch_dir, f'{utt_info["Uid"]}.npy'
            )
            frame_pitch = np.load(pitch_path)
            assert len(frame_pitch) > 0
            uv = frame_pitch != 0
            utt2uv[utt] = uv
            phone_pitch = phone_average_pitch(frame_pitch, utt2dur[utt], interoperate)
            if use_log_scale:
                nonzero_idxes = np.where(phone_pitch != 0)[0]
                phone_pitch[nonzero_idxes] = np.log(phone_pitch[nonzero_idxes])
            utt2pitch[utt] = phone_pitch
            pitch_scaler.partial_fit(remove_outlier(phone_pitch).reshape(-1, 1))

        mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0]
        max_value = np.finfo(np.float64).min
        min_value = np.finfo(np.float64).max
        if return_norm:
            for utt_info in meta_data:
                utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
                pitch = utt2pitch[utt]
                normalized_pitch = (pitch - mean) / std
                max_value = max(max_value, max(normalized_pitch))
                min_value = min(min_value, min(normalized_pitch))
                utt2pitch[utt] = normalized_pitch
                phone_normalized_pitch_path = os.path.join(
                    processed_dir,
                    utt_info["Dataset"],
                    "phone_level_" + pitch_dir,
                    f'{utt_info["Uid"]}.npy',
                )
        pitch_statistic = {
            "mean": mean,
            "std": std,
            "min_value": min_value,
            "max_value": max_value,
        }
    else:
        spk2utt = {}
        pitch_statistic = []
        for utt_info in tqdm(meta_data):
            utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
            if not utt2spk[utt] in spk2utt:
                spk2utt[utt2spk[utt]] = []
            spk2utt[utt2spk[utt]].append(utt)

        for spk in spk2utt:
            pitch_scaler = StandardScaler()
            for utt in spk2utt[spk]:
                dataset = utt.split("_")[0]
                uid = "_".join(utt.split("_")[1:])
                pitch_path = os.path.join(
                    processed_dir, dataset, pitch_dir, f"{uid}.npy"
                )
                frame_pitch = np.load(pitch_path)
                assert len(frame_pitch) > 0
                uv = frame_pitch != 0
                utt2uv[utt] = uv
                phone_pitch = phone_average_pitch(
                    frame_pitch, utt2dur[utt], interoperate
                )
                if use_log_scale:
                    nonzero_idxes = np.where(phone_pitch != 0)[0]
                    phone_pitch[nonzero_idxes] = np.log(phone_pitch[nonzero_idxes])
                utt2pitch[utt] = phone_pitch
                pitch_scaler.partial_fit(remove_outlier(phone_pitch).reshape(-1, 1))

            mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0]
            max_value = np.finfo(np.float64).min
            min_value = np.finfo(np.float64).max

            if return_norm:
                for utt in spk2utt[spk]:
                    pitch = utt2pitch[utt]
                    normalized_pitch = (pitch - mean) / std
                    max_value = max(max_value, max(normalized_pitch))
                    min_value = min(min_value, min(normalized_pitch))
                    utt2pitch[utt] = normalized_pitch
            pitch_statistic.append(
                {
                    "spk": spk,
                    "mean": mean,
                    "std": std,
                    "min_value": min_value,
                    "max_value": max_value,
                }
            )

    return utt2pitch, utt2uv, pitch_statistic


def phone_average_pitch(pitch, dur, interoperate=False):
    pos = 0

    if interoperate:
        nonzero_ids = np.where(pitch != 0)[0]
        interp_fn = interp1d(
            nonzero_ids,
            pitch[nonzero_ids],
            fill_value=(pitch[nonzero_ids[0]], pitch[nonzero_ids[-1]]),
            bounds_error=False,
        )
        pitch = interp_fn(np.arange(0, len(pitch)))
    phone_pitch = np.zeros(len(dur))

    for i, d in enumerate(dur):
        d = int(d)
        if d > 0 and pos < len(pitch):
            phone_pitch[i] = np.mean(pitch[pos : pos + d])
        else:
            phone_pitch[i] = 0
        pos += d
    return phone_pitch


def load_energy(
    meta_data,
    processed_dir,
    energy_dir,
    use_log_scale=False,
    return_norm=False,
    utt2spk=None,
):
    utt2energy = {}
    if utt2spk is None:
        for utt_info in meta_data:
            utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
            energy_path = os.path.join(
                processed_dir, utt_info["Dataset"], energy_dir, f'{utt_info["Uid"]}.npy'
            )
            if not os.path.exists(energy_path):
                continue
            energy = np.load(energy_path)
            assert len(energy) > 0

            if use_log_scale:
                nonzero_idxes = np.where(energy != 0)[0]
                energy[nonzero_idxes] = np.log(energy[nonzero_idxes])
            utt2energy[utt] = energy

        if return_norm:
            with open(
                os.path.join(
                    processed_dir, utt_info["Dataset"], energy_dir, "statistics.json"
                )
            ) as f:
                stats = json.load(f)
                mean, std = (
                    stats[utt_info["Dataset"] + "_" + utt_info["Singer"]][
                        "voiced_positions"
                    ]["mean"],
                    stats["LJSpeech_LJSpeech"]["voiced_positions"]["std"],
                )
            for utt in utt2energy.keys():
                energy = utt2energy[utt]
                normalized_energy = (energy - mean) / std
                utt2energy[utt] = normalized_energy

        energy_statistic = {"mean": mean, "std": std}
    else:
        spk2utt = {}
        energy_statistic = []
        for utt_info in meta_data:
            utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
            if not utt2spk[utt] in spk2utt:
                spk2utt[utt2spk[utt]] = []
            spk2utt[utt2spk[utt]].append(utt)

        for spk in spk2utt:
            energy_scaler = StandardScaler()
            for utt in spk2utt[spk]:
                dataset = utt.split("_")[0]
                uid = "_".join(utt.split("_")[1:])
                energy_path = os.path.join(
                    processed_dir, dataset, energy_dir, f"{uid}.npy"
                )
                if not os.path.exists(energy_path):
                    continue
                frame_energy = np.load(energy_path)
                assert len(frame_energy) > 0

                if use_log_scale:
                    nonzero_idxes = np.where(frame_energy != 0)[0]
                    frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes])
                utt2energy[utt] = frame_energy
                energy_scaler.partial_fit(frame_energy.reshape(-1, 1))

            mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0]
            if return_norm:
                for utt in spk2utt[spk]:
                    energy = utt2energy[utt]
                    normalized_energy = (energy - mean) / std
                    utt2energy[utt] = normalized_energy
            energy_statistic.append({"spk": spk, "mean": mean, "std": std})

    return utt2energy, energy_statistic


def load_frame_energy(
    meta_data,
    processed_dir,
    energy_dir,
    use_log_scale=False,
    return_norm=False,
    interoperate=False,
    utt2spk=None,
):
    utt2energy = {}
    if utt2spk is None:
        energy_scaler = StandardScaler()
        for utt_info in meta_data:
            utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
            energy_path = os.path.join(
                processed_dir, utt_info["Dataset"], energy_dir, f'{utt_info["Uid"]}.npy'
            )
            frame_energy = np.load(energy_path)
            assert len(frame_energy) > 0

            if use_log_scale:
                nonzero_idxes = np.where(frame_energy != 0)[0]
                frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes])
            utt2energy[utt] = frame_energy
            energy_scaler.partial_fit(frame_energy.reshape(-1, 1))

        mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0]
        if return_norm:
            for utt_info in meta_data:
                utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
                energy = utt2energy[utt]
                normalized_energy = (energy - mean) / std
                utt2energy[utt] = normalized_energy
        energy_statistic = {"mean": mean, "std": std}

    else:
        spk2utt = {}
        energy_statistic = []
        for utt_info in meta_data:
            utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
            if not utt2spk[utt] in spk2utt:
                spk2utt[utt2spk[utt]] = []
            spk2utt[utt2spk[utt]].append(utt)

        for spk in spk2utt:
            energy_scaler = StandardScaler()
            for utt in spk2utt[spk]:
                dataset = utt.split("_")[0]
                uid = "_".join(utt.split("_")[1:])
                energy_path = os.path.join(
                    processed_dir, dataset, energy_dir, f"{uid}.npy"
                )
                frame_energy = np.load(energy_path)
                assert len(frame_energy) > 0

                if use_log_scale:
                    nonzero_idxes = np.where(frame_energy != 0)[0]
                    frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes])
                utt2energy[utt] = frame_energy
                energy_scaler.partial_fit(frame_energy.reshape(-1, 1))

            mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0]
            if return_norm:
                for utt in spk2utt[spk]:
                    energy = utt2energy[utt]
                    normalized_energy = (energy - mean) / std
                    utt2energy[utt] = normalized_energy
            energy_statistic.append({"spk": spk, "mean": mean, "std": std})

    return utt2energy, energy_statistic


def align_length(feature, target_len, pad_value=0.0):
    feature_len = feature.shape[-1]
    dim = len(feature.shape)
    # align 1-D data
    if dim == 2:
        if target_len > feature_len:
            feature = np.pad(
                feature,
                ((0, 0), (0, target_len - feature_len)),
                constant_values=pad_value,
            )
        else:
            feature = feature[:, :target_len]
    # align 2-D data
    elif dim == 1:
        if target_len > feature_len:
            feature = np.pad(
                feature, (0, target_len - feature_len), constant_values=pad_value
            )
        else:
            feature = feature[:target_len]
    else:
        raise NotImplementedError
    return feature


def align_whisper_feauture_length(
    feature, target_len, fast_mapping=True, source_hop=320, target_hop=256
):
    factor = np.gcd(source_hop, target_hop)
    source_hop //= factor
    target_hop //= factor
    # print(
    #     "Mapping source's {} frames => target's {} frames".format(
    #         target_hop, source_hop
    #     )
    # )

    max_source_len = 1500
    target_len = min(target_len, max_source_len * source_hop // target_hop)

    width = feature.shape[-1]

    if fast_mapping:
        source_len = target_len * target_hop // source_hop + 1
        feature = feature[:source_len]

    else:
        source_len = max_source_len

    # const ~= target_len * target_hop
    const = source_len * source_hop // target_hop * target_hop

    # (source_len * source_hop, dim)
    up_sampling_feats = np.repeat(feature, source_hop, axis=0)
    # (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim)
    down_sampling_feats = np.average(
        up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1
    )
    assert len(down_sampling_feats) >= target_len

    # (target_len, dim)
    feat = down_sampling_feats[:target_len]

    return feat


def align_content_feature_length(feature, target_len, source_hop=320, target_hop=256):
    factor = np.gcd(source_hop, target_hop)
    source_hop //= factor
    target_hop //= factor
    # print(
    #     "Mapping source's {} frames => target's {} frames".format(
    #         target_hop, source_hop
    #     )
    # )

    # (source_len, 256)
    source_len, width = feature.shape

    # const ~= target_len * target_hop
    const = source_len * source_hop // target_hop * target_hop

    # (source_len * source_hop, dim)
    up_sampling_feats = np.repeat(feature, source_hop, axis=0)
    # (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim)
    down_sampling_feats = np.average(
        up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1
    )

    err = abs(target_len - len(down_sampling_feats))
    if err > 4:  ## why 4 not 3?
        print("target_len:", target_len)
        print("raw feature:", feature.shape)
        print("up_sampling:", up_sampling_feats.shape)
        print("down_sampling_feats:", down_sampling_feats.shape)
        exit()
    if len(down_sampling_feats) < target_len:
        # (1, dim) -> (err, dim)
        end = down_sampling_feats[-1][None, :].repeat(err, axis=0)
        down_sampling_feats = np.concatenate([down_sampling_feats, end], axis=0)

    # (target_len, dim)
    feat = down_sampling_feats[:target_len]

    return feat


def remove_outlier(values):
    values = np.array(values)
    p25 = np.percentile(values, 25)
    p75 = np.percentile(values, 75)
    lower = p25 - 1.5 * (p75 - p25)
    upper = p75 + 1.5 * (p75 - p25)
    normal_indices = np.logical_and(values > lower, values < upper)
    return values[normal_indices]