Spaces:
Running
Running
File size: 20,064 Bytes
0d80816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import numpy as np
from scipy.interpolate import interp1d
from tqdm import tqdm
from sklearn.preprocessing import StandardScaler
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def load_content_feature_path(meta_data, processed_dir, feat_dir):
utt2feat_path = {}
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
feat_path = os.path.join(
processed_dir, utt_info["Dataset"], feat_dir, f'{utt_info["Uid"]}.npy'
)
utt2feat_path[utt] = feat_path
return utt2feat_path
def load_source_content_feature_path(meta_data, feat_dir):
utt2feat_path = {}
for utt in meta_data:
feat_path = os.path.join(feat_dir, f"{utt}.npy")
utt2feat_path[utt] = feat_path
return utt2feat_path
def get_spk_map(spk2id_path, utt2spk_path):
utt2spk = {}
with open(spk2id_path, "r") as spk2id_file:
spk2id = json.load(spk2id_file)
with open(utt2spk_path, encoding="utf-8") as f:
for line in f.readlines():
utt, spk = line.strip().split("\t")
utt2spk[utt] = spk
return spk2id, utt2spk
def get_target_f0_median(f0_dir):
total_f0 = []
for utt in os.listdir(f0_dir):
if not utt.endswith(".npy"):
continue
f0_feat_path = os.path.join(f0_dir, utt)
f0 = np.load(f0_feat_path)
total_f0 += f0.tolist()
total_f0 = np.array(total_f0)
voiced_position = np.where(total_f0 != 0)
return np.median(total_f0[voiced_position])
def get_conversion_f0_factor(source_f0, target_median, source_median=None):
"""Align the median between source f0 and target f0
Note: Here we use multiplication, whose factor is target_median/source_median
Reference: Frequency and pitch interval
http://blog.ccyg.studio/article/be12c2ee-d47c-4098-9782-ca76da3035e4/
"""
if source_median is None:
voiced_position = np.where(source_f0 != 0)
source_median = np.median(source_f0[voiced_position])
factor = target_median / source_median
return source_median, factor
def transpose_key(frame_pitch, trans_key):
# Transpose by user's argument
print("Transpose key = {} ...\n".format(trans_key))
transed_pitch = frame_pitch * 2 ** (trans_key / 12)
return transed_pitch
def pitch_shift_to_target(frame_pitch, target_pitch_median, source_pitch_median=None):
# Loading F0 Base (median) and shift
source_pitch_median, factor = get_conversion_f0_factor(
frame_pitch, target_pitch_median, source_pitch_median
)
print(
"Auto transposing: source f0 median = {:.1f}, target f0 median = {:.1f}, factor = {:.2f}".format(
source_pitch_median, target_pitch_median, factor
)
)
transed_pitch = frame_pitch * factor
return transed_pitch
def load_frame_pitch(
meta_data,
processed_dir,
pitch_dir,
use_log_scale=False,
return_norm=False,
interoperate=False,
utt2spk=None,
):
utt2pitch = {}
utt2uv = {}
if utt2spk is None:
pitch_scaler = StandardScaler()
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
pitch_path = os.path.join(
processed_dir, utt_info["Dataset"], pitch_dir, f'{utt_info["Uid"]}.npy'
)
pitch = np.load(pitch_path)
assert len(pitch) > 0
uv = pitch != 0
utt2uv[utt] = uv
if use_log_scale:
nonzero_idxes = np.where(pitch != 0)[0]
pitch[nonzero_idxes] = np.log(pitch[nonzero_idxes])
utt2pitch[utt] = pitch
pitch_scaler.partial_fit(pitch.reshape(-1, 1))
mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0]
if return_norm:
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
pitch = utt2pitch[utt]
normalized_pitch = (pitch - mean) / std
utt2pitch[utt] = normalized_pitch
pitch_statistic = {"mean": mean, "std": std}
else:
spk2utt = {}
pitch_statistic = []
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
if not utt2spk[utt] in spk2utt:
spk2utt[utt2spk[utt]] = []
spk2utt[utt2spk[utt]].append(utt)
for spk in spk2utt:
pitch_scaler = StandardScaler()
for utt in spk2utt[spk]:
dataset = utt.split("_")[0]
uid = "_".join(utt.split("_")[1:])
pitch_path = os.path.join(
processed_dir, dataset, pitch_dir, f"{uid}.npy"
)
pitch = np.load(pitch_path)
assert len(pitch) > 0
uv = pitch != 0
utt2uv[utt] = uv
if use_log_scale:
nonzero_idxes = np.where(pitch != 0)[0]
pitch[nonzero_idxes] = np.log(pitch[nonzero_idxes])
utt2pitch[utt] = pitch
pitch_scaler.partial_fit(pitch.reshape(-1, 1))
mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0]
if return_norm:
for utt in spk2utt[spk]:
pitch = utt2pitch[utt]
normalized_pitch = (pitch - mean) / std
utt2pitch[utt] = normalized_pitch
pitch_statistic.append({"spk": spk, "mean": mean, "std": std})
return utt2pitch, utt2uv, pitch_statistic
# discard
def load_phone_pitch(
meta_data,
processed_dir,
pitch_dir,
utt2dur,
use_log_scale=False,
return_norm=False,
interoperate=True,
utt2spk=None,
):
print("Load Phone Pitch")
utt2pitch = {}
utt2uv = {}
if utt2spk is None:
pitch_scaler = StandardScaler()
for utt_info in tqdm(meta_data):
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
pitch_path = os.path.join(
processed_dir, utt_info["Dataset"], pitch_dir, f'{utt_info["Uid"]}.npy'
)
frame_pitch = np.load(pitch_path)
assert len(frame_pitch) > 0
uv = frame_pitch != 0
utt2uv[utt] = uv
phone_pitch = phone_average_pitch(frame_pitch, utt2dur[utt], interoperate)
if use_log_scale:
nonzero_idxes = np.where(phone_pitch != 0)[0]
phone_pitch[nonzero_idxes] = np.log(phone_pitch[nonzero_idxes])
utt2pitch[utt] = phone_pitch
pitch_scaler.partial_fit(remove_outlier(phone_pitch).reshape(-1, 1))
mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0]
max_value = np.finfo(np.float64).min
min_value = np.finfo(np.float64).max
if return_norm:
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
pitch = utt2pitch[utt]
normalized_pitch = (pitch - mean) / std
max_value = max(max_value, max(normalized_pitch))
min_value = min(min_value, min(normalized_pitch))
utt2pitch[utt] = normalized_pitch
phone_normalized_pitch_path = os.path.join(
processed_dir,
utt_info["Dataset"],
"phone_level_" + pitch_dir,
f'{utt_info["Uid"]}.npy',
)
pitch_statistic = {
"mean": mean,
"std": std,
"min_value": min_value,
"max_value": max_value,
}
else:
spk2utt = {}
pitch_statistic = []
for utt_info in tqdm(meta_data):
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
if not utt2spk[utt] in spk2utt:
spk2utt[utt2spk[utt]] = []
spk2utt[utt2spk[utt]].append(utt)
for spk in spk2utt:
pitch_scaler = StandardScaler()
for utt in spk2utt[spk]:
dataset = utt.split("_")[0]
uid = "_".join(utt.split("_")[1:])
pitch_path = os.path.join(
processed_dir, dataset, pitch_dir, f"{uid}.npy"
)
frame_pitch = np.load(pitch_path)
assert len(frame_pitch) > 0
uv = frame_pitch != 0
utt2uv[utt] = uv
phone_pitch = phone_average_pitch(
frame_pitch, utt2dur[utt], interoperate
)
if use_log_scale:
nonzero_idxes = np.where(phone_pitch != 0)[0]
phone_pitch[nonzero_idxes] = np.log(phone_pitch[nonzero_idxes])
utt2pitch[utt] = phone_pitch
pitch_scaler.partial_fit(remove_outlier(phone_pitch).reshape(-1, 1))
mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0]
max_value = np.finfo(np.float64).min
min_value = np.finfo(np.float64).max
if return_norm:
for utt in spk2utt[spk]:
pitch = utt2pitch[utt]
normalized_pitch = (pitch - mean) / std
max_value = max(max_value, max(normalized_pitch))
min_value = min(min_value, min(normalized_pitch))
utt2pitch[utt] = normalized_pitch
pitch_statistic.append(
{
"spk": spk,
"mean": mean,
"std": std,
"min_value": min_value,
"max_value": max_value,
}
)
return utt2pitch, utt2uv, pitch_statistic
def phone_average_pitch(pitch, dur, interoperate=False):
pos = 0
if interoperate:
nonzero_ids = np.where(pitch != 0)[0]
interp_fn = interp1d(
nonzero_ids,
pitch[nonzero_ids],
fill_value=(pitch[nonzero_ids[0]], pitch[nonzero_ids[-1]]),
bounds_error=False,
)
pitch = interp_fn(np.arange(0, len(pitch)))
phone_pitch = np.zeros(len(dur))
for i, d in enumerate(dur):
d = int(d)
if d > 0 and pos < len(pitch):
phone_pitch[i] = np.mean(pitch[pos : pos + d])
else:
phone_pitch[i] = 0
pos += d
return phone_pitch
def load_energy(
meta_data,
processed_dir,
energy_dir,
use_log_scale=False,
return_norm=False,
utt2spk=None,
):
utt2energy = {}
if utt2spk is None:
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
energy_path = os.path.join(
processed_dir, utt_info["Dataset"], energy_dir, f'{utt_info["Uid"]}.npy'
)
if not os.path.exists(energy_path):
continue
energy = np.load(energy_path)
assert len(energy) > 0
if use_log_scale:
nonzero_idxes = np.where(energy != 0)[0]
energy[nonzero_idxes] = np.log(energy[nonzero_idxes])
utt2energy[utt] = energy
if return_norm:
with open(
os.path.join(
processed_dir, utt_info["Dataset"], energy_dir, "statistics.json"
)
) as f:
stats = json.load(f)
mean, std = (
stats[utt_info["Dataset"] + "_" + utt_info["Singer"]][
"voiced_positions"
]["mean"],
stats["LJSpeech_LJSpeech"]["voiced_positions"]["std"],
)
for utt in utt2energy.keys():
energy = utt2energy[utt]
normalized_energy = (energy - mean) / std
utt2energy[utt] = normalized_energy
energy_statistic = {"mean": mean, "std": std}
else:
spk2utt = {}
energy_statistic = []
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
if not utt2spk[utt] in spk2utt:
spk2utt[utt2spk[utt]] = []
spk2utt[utt2spk[utt]].append(utt)
for spk in spk2utt:
energy_scaler = StandardScaler()
for utt in spk2utt[spk]:
dataset = utt.split("_")[0]
uid = "_".join(utt.split("_")[1:])
energy_path = os.path.join(
processed_dir, dataset, energy_dir, f"{uid}.npy"
)
if not os.path.exists(energy_path):
continue
frame_energy = np.load(energy_path)
assert len(frame_energy) > 0
if use_log_scale:
nonzero_idxes = np.where(frame_energy != 0)[0]
frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes])
utt2energy[utt] = frame_energy
energy_scaler.partial_fit(frame_energy.reshape(-1, 1))
mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0]
if return_norm:
for utt in spk2utt[spk]:
energy = utt2energy[utt]
normalized_energy = (energy - mean) / std
utt2energy[utt] = normalized_energy
energy_statistic.append({"spk": spk, "mean": mean, "std": std})
return utt2energy, energy_statistic
def load_frame_energy(
meta_data,
processed_dir,
energy_dir,
use_log_scale=False,
return_norm=False,
interoperate=False,
utt2spk=None,
):
utt2energy = {}
if utt2spk is None:
energy_scaler = StandardScaler()
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
energy_path = os.path.join(
processed_dir, utt_info["Dataset"], energy_dir, f'{utt_info["Uid"]}.npy'
)
frame_energy = np.load(energy_path)
assert len(frame_energy) > 0
if use_log_scale:
nonzero_idxes = np.where(frame_energy != 0)[0]
frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes])
utt2energy[utt] = frame_energy
energy_scaler.partial_fit(frame_energy.reshape(-1, 1))
mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0]
if return_norm:
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
energy = utt2energy[utt]
normalized_energy = (energy - mean) / std
utt2energy[utt] = normalized_energy
energy_statistic = {"mean": mean, "std": std}
else:
spk2utt = {}
energy_statistic = []
for utt_info in meta_data:
utt = utt_info["Dataset"] + "_" + utt_info["Uid"]
if not utt2spk[utt] in spk2utt:
spk2utt[utt2spk[utt]] = []
spk2utt[utt2spk[utt]].append(utt)
for spk in spk2utt:
energy_scaler = StandardScaler()
for utt in spk2utt[spk]:
dataset = utt.split("_")[0]
uid = "_".join(utt.split("_")[1:])
energy_path = os.path.join(
processed_dir, dataset, energy_dir, f"{uid}.npy"
)
frame_energy = np.load(energy_path)
assert len(frame_energy) > 0
if use_log_scale:
nonzero_idxes = np.where(frame_energy != 0)[0]
frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes])
utt2energy[utt] = frame_energy
energy_scaler.partial_fit(frame_energy.reshape(-1, 1))
mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0]
if return_norm:
for utt in spk2utt[spk]:
energy = utt2energy[utt]
normalized_energy = (energy - mean) / std
utt2energy[utt] = normalized_energy
energy_statistic.append({"spk": spk, "mean": mean, "std": std})
return utt2energy, energy_statistic
def align_length(feature, target_len, pad_value=0.0):
feature_len = feature.shape[-1]
dim = len(feature.shape)
# align 1-D data
if dim == 2:
if target_len > feature_len:
feature = np.pad(
feature,
((0, 0), (0, target_len - feature_len)),
constant_values=pad_value,
)
else:
feature = feature[:, :target_len]
# align 2-D data
elif dim == 1:
if target_len > feature_len:
feature = np.pad(
feature, (0, target_len - feature_len), constant_values=pad_value
)
else:
feature = feature[:target_len]
else:
raise NotImplementedError
return feature
def align_whisper_feauture_length(
feature, target_len, fast_mapping=True, source_hop=320, target_hop=256
):
factor = np.gcd(source_hop, target_hop)
source_hop //= factor
target_hop //= factor
# print(
# "Mapping source's {} frames => target's {} frames".format(
# target_hop, source_hop
# )
# )
max_source_len = 1500
target_len = min(target_len, max_source_len * source_hop // target_hop)
width = feature.shape[-1]
if fast_mapping:
source_len = target_len * target_hop // source_hop + 1
feature = feature[:source_len]
else:
source_len = max_source_len
# const ~= target_len * target_hop
const = source_len * source_hop // target_hop * target_hop
# (source_len * source_hop, dim)
up_sampling_feats = np.repeat(feature, source_hop, axis=0)
# (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim)
down_sampling_feats = np.average(
up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1
)
assert len(down_sampling_feats) >= target_len
# (target_len, dim)
feat = down_sampling_feats[:target_len]
return feat
def align_content_feature_length(feature, target_len, source_hop=320, target_hop=256):
factor = np.gcd(source_hop, target_hop)
source_hop //= factor
target_hop //= factor
# print(
# "Mapping source's {} frames => target's {} frames".format(
# target_hop, source_hop
# )
# )
# (source_len, 256)
source_len, width = feature.shape
# const ~= target_len * target_hop
const = source_len * source_hop // target_hop * target_hop
# (source_len * source_hop, dim)
up_sampling_feats = np.repeat(feature, source_hop, axis=0)
# (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim)
down_sampling_feats = np.average(
up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1
)
err = abs(target_len - len(down_sampling_feats))
if err > 4: ## why 4 not 3?
print("target_len:", target_len)
print("raw feature:", feature.shape)
print("up_sampling:", up_sampling_feats.shape)
print("down_sampling_feats:", down_sampling_feats.shape)
exit()
if len(down_sampling_feats) < target_len:
# (1, dim) -> (err, dim)
end = down_sampling_feats[-1][None, :].repeat(err, axis=0)
down_sampling_feats = np.concatenate([down_sampling_feats, end], axis=0)
# (target_len, dim)
feat = down_sampling_feats[:target_len]
return feat
def remove_outlier(values):
values = np.array(values)
p25 = np.percentile(values, 25)
p75 = np.percentile(values, 75)
lower = p25 - 1.5 * (p75 - p25)
upper = p75 + 1.5 * (p75 - p25)
normal_indices = np.logical_and(values > lower, values < upper)
return values[normal_indices]
|