File size: 4,589 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# This code is modified from https://huggingface.co./m-a-p/MERT-v1-330M

import torch
from tqdm import tqdm
import numpy as np

from transformers import Wav2Vec2FeatureExtractor
from transformers import AutoModel
import torchaudio
import torchaudio.transforms as T
from sklearn.preprocessing import StandardScaler


def mert_encoder(model, processor, audio_path, hps):
    """
    # mert default sr: 24000
    """
    with torch.no_grad():
        resample_rate = processor.sampling_rate
        device = next(model.parameters()).device

        input_audio, sampling_rate = torchaudio.load(audio_path)
        input_audio = input_audio.squeeze()

        if sampling_rate != resample_rate:
            resampler = T.Resample(sampling_rate, resample_rate)
            input_audio = resampler(input_audio)

        inputs = processor(
            input_audio, sampling_rate=resample_rate, return_tensors="pt"
        ).to(
            device
        )  # {input_values: tensor, attention_mask: tensor}

        outputs = model(**inputs, output_hidden_states=True)  # list: len is 25

    # [25 layer, Time steps, 1024 feature_dim]
    # all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
    # mert_features.append(all_layer_hidden_states)

    feature = outputs.hidden_states[
        hps.mert_feature_layer
    ].squeeze()  # [1, frame len, 1024] ->  [frame len, 1024]

    return feature.cpu().detach().numpy()


def mert_features_normalization(raw_mert_features):
    normalized_mert_features = list()

    mert_features = np.array(raw_mert_features)
    scaler = StandardScaler().fit(mert_features)
    for raw_mert_feature in raw_mert_feature:
        normalized_mert_feature = scaler.transform(raw_mert_feature)
        normalized_mert_features.append(normalized_mert_feature)
    return normalized_mert_features


def get_mapped_mert_features(raw_mert_features, mapping_features, fast_mapping=True):
    source_hop = 320
    target_hop = 256

    factor = np.gcd(source_hop, target_hop)
    source_hop //= factor
    target_hop //= factor
    print(
        "Mapping source's {} frames => target's {} frames".format(
            target_hop, source_hop
        )
    )

    mert_features = []
    for index, mapping_feat in enumerate(tqdm(mapping_features)):
        # mapping_feat: (mels_frame_len, n_mels)
        target_len = mapping_feat.shape[0]

        # (frame_len, 1024)
        raw_feats = raw_mert_features[index].cpu().numpy()
        source_len, width = raw_feats.shape

        # const ~= target_len * target_hop
        const = source_len * source_hop // target_hop * target_hop

        # (source_len * source_hop, dim)
        up_sampling_feats = np.repeat(raw_feats, source_hop, axis=0)
        # (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim)
        down_sampling_feats = np.average(
            up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1
        )

        err = abs(target_len - len(down_sampling_feats))
        if err > 3:
            print("index:", index)
            print("mels:", mapping_feat.shape)
            print("raw mert vector:", raw_feats.shape)
            print("up_sampling:", up_sampling_feats.shape)
            print("const:", const)
            print("down_sampling_feats:", down_sampling_feats.shape)
            exit()
        if len(down_sampling_feats) < target_len:
            # (1, dim) -> (err, dim)
            end = down_sampling_feats[-1][None, :].repeat(err, axis=0)
            down_sampling_feats = np.concatenate([down_sampling_feats, end], axis=0)

        # (target_len, dim)
        feats = down_sampling_feats[:target_len]
        mert_features.append(feats)

    return mert_features


def load_mert_model(hps):
    print("Loading MERT Model: ", hps.mert_model)

    # Load model
    model_name = hps.mert_model
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True)

    if torch.cuda.is_available():
        model = model.cuda()

    # model = model.eval()

    preprocessor = Wav2Vec2FeatureExtractor.from_pretrained(
        model_name, trust_remote_code=True
    )
    return model, preprocessor


# loading the corresponding preprocessor config
# def load_preprocessor (model_name="m-a-p/MERT-v1-330M"):
#     print('load_preprocessor...')
#     preprocessor = Wav2Vec2FeatureExtractor.from_pretrained(model_name,trust_remote_code=True)
#     return preprocessor