Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import numpy as np | |
import torch | |
import soundfile as sf | |
import gradio as gr | |
from diffusers import DDPMScheduler | |
from pico_model import PicoDiffusion, build_pretrained_models | |
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL | |
class dotdict(dict): | |
"""dot.notation access to dictionary attributes""" | |
__getattr__ = dict.get | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |
class InferRunner: | |
def __init__(self, device): | |
vae_config = json.load(open("ckpts/ldm/vae_config.json")) | |
self.vae = AutoencoderKL(**vae_config).to(device) | |
vae_weights = torch.load("ckpts/ldm/pytorch_model_vae.bin", map_location=device) | |
self.vae.load_state_dict(vae_weights) | |
train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0])) | |
self.pico_model = PicoDiffusion( | |
scheduler_name=train_args.scheduler_name, | |
unet_model_config_path=train_args.unet_model_config, | |
snr_gamma=train_args.snr_gamma, | |
freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt", | |
diffusion_pt="ckpts/pico_model/diffusion.pt", | |
).eval().to(device) | |
self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
runner = InferRunner(device) | |
event_list = [ | |
"burping_belching", # 0 | |
"car_horn_honking", # | |
"cat_meowing", # | |
"cow_mooing", # | |
"dog_barking", # | |
"door_knocking", # | |
"door_slamming", # | |
"explosion", # | |
"gunshot", # 8 | |
"sheep_goat_bleating", # | |
"sneeze", # | |
"spraying", # | |
"thump_thud", # | |
"train_horn", # | |
"tapping_clicking_clanking", # | |
"woman_laughing", # | |
"duck_quacking", # 16 | |
"whistling", # | |
] | |
def infer(caption, num_steps=200, guidance_scale=3.0, audio_len=16000*10): | |
with torch.no_grad(): | |
latents = runner.pico_model.demo_inference(caption, runner.scheduler, num_steps=num_steps, guidance_scale=guidance_scale, num_samples_per_prompt=1, disable_progress=True) | |
mel = runner.vae.decode_first_stage(latents) | |
wave = runner.vae.decode_to_waveform(mel)[0][:audio_len] | |
outpath = f"output.wav" | |
sf.write(outpath, wave, samplerate=16000, subtype='PCM_16') | |
return outpath | |
description_text = f"18 events: {', '.join(event_list)}" | |
prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1'.", | |
value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",) | |
outaudio = gr.Audio() | |
num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1) | |
guidance_scale = gr.Slider(label="guidance_scale", minimum=0.1, maximum=8.0, value=3.0, step=0.1) | |
gr_interface = gr.Interface( | |
fn=infer, | |
inputs=[prompt, num_steps, guidance_scale], | |
outputs=[outaudio], | |
title="PicoAudio", | |
description=description_text, | |
allow_flagging=False, | |
examples=[ | |
["spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031."], | |
["dog_barking at 0.562-2.562_4.25-6.25."], | |
["cow_mooing at 0.958-3.582_5.272-7.896."], | |
], | |
cache_examples="lazy", # Turn on to cache. | |
) | |
gr_interface.queue(10).launch() | |