File size: 13,525 Bytes
8c1bf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7346990
8c1bf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae95272
8c1bf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8366c6c
93df452
8c1bf05
 
 
 
ae95272
8c1bf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae95272
8c1bf05
 
 
ae95272
8c1bf05
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import random
import numpy as np
from tqdm import tqdm
from einops import repeat
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.utils.torch_utils import randn_tensor
from diffusers import DDPMScheduler, UNet2DConditionModel

def _init_layer(layer):
    """Initialize a Linear or Convolutional layer. """
    nn.init.xavier_uniform_(layer.weight)
 
    if hasattr(layer, 'bias'):
        if layer.bias is not None:
            layer.bias.data.fill_(0.)

class ClapText_Onset_2_Audio_Diffusion(nn.Module):
    def __init__(
        self,
        scheduler_name,
        unet_model_config_path=None,
        snr_gamma=None,
        uncondition=False,
    ):
        super().__init__()

        assert unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
        self.scheduler_name = scheduler_name
        self.unet_model_config_path = unet_model_config_path
        self.snr_gamma = snr_gamma
        self.uncondition = uncondition
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        # https://huggingface.co./docs/diffusers/v0.14.0/en/api/schedulers/overview
        self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
        self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
        unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
        self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")

    def compute_snr(self, timesteps):
        """
        Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
        """
        alphas_cumprod = self.noise_scheduler.alphas_cumprod
        sqrt_alphas_cumprod = alphas_cumprod**0.5
        sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

        # Expand the tensors.
        # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
        sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
        while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
        alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
        while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
        sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

        # Compute SNR.
        snr = (alpha / sigma) ** 2
        return snr    

    def encode_channel(self, input):
        # input [batch, 32, 256] -> [batch, 2, 256, 16]
        return input.reshape(input.shape[0], 2, 16, 256).transpose(2, 3)

    def encode_text(self, input_dict):      
        device = self.device   
        
        encoder_hidden_states = input_dict["event_info"].repeat_interleave(2, -1).unsqueeze(1)
        boolean_encoder_mask = (torch.ones(len(encoder_hidden_states), 1) == 1).to(device)

        return encoder_hidden_states, boolean_encoder_mask

    def forward(self, input_dict, validation_mode=False):
        device = self.device
        latents = input_dict["latent"]
        num_train_timesteps = self.noise_scheduler.num_train_timesteps
        self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
        # [batch, 1, 1024], [batch, 1]

        encoder_hidden_states, boolean_encoder_mask = self.encode_text(input_dict)
        if self.uncondition:
            mask_indices = [k for k in range(len(latents)) if random.random() < 0.1]
            if len(mask_indices) > 0:
                encoder_hidden_states[mask_indices] = 0

        bsz = latents.shape[0]
        if validation_mode:
            timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
        else:
            # Sample a random timestep for each instance
            timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
        timesteps = timesteps.long()

        noise = torch.randn_like(latents)
        noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
        
        onset_emb = self.encode_channel(input_dict["onset"])
        # [batch, channel:8, 256, 16] + [batch, onset:2, 256, 16]
        onset_noisy_latents = torch.cat((onset_emb, noisy_latents), dim=1)

        # Get the target for loss depending on the prediction type
        if self.noise_scheduler.config.prediction_type == "epsilon":
            target = noise
        elif self.noise_scheduler.config.prediction_type == "v_prediction":
            target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
        else:
            raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
        
        model_pred = self.unet(
            onset_noisy_latents, timesteps, encoder_hidden_states, 
            #encoder_attention_mask=boolean_encoder_mask
        ).sample

        if self.snr_gamma is None:
            loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
        else:
            # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
            # Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
            snr = self.compute_snr(timesteps)
            mse_loss_weights = (
                torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
            )
            loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
            loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
            loss = loss.mean()

        return loss

    def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
        shape = (batch_size, num_channels_latents, 256, 16)
        latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * inference_scheduler.init_noise_sigma
        return latents

    def encode_text_classifier_free(self, input_dict, num_samples_per_prompt):
        device = self.device
        prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict)
        prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
        attention_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
        # get unconditional embeddings for classifier free guidance
        negative_prompt_embeds = torch.zeros(prompt_embeds.shape).to(device)
        uncond_attention_mask = (torch.ones(attention_mask.shape) == 1).to(device)            

        # For classifier free guidance, we need to do two forward passes.
        # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
        boolean_prompt_mask = (prompt_mask == 1).to(device)

        return prompt_embeds, boolean_prompt_mask

    @torch.no_grad()
    def inference(self, input_dict, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True):
        prompt = input_dict["onset"]
        device = self.device
        classifier_free_guidance = guidance_scale > 1.0
        batch_size = len(prompt) * num_samples_per_prompt

        if classifier_free_guidance:
            prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(input_dict, num_samples_per_prompt)
        else:
            prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict)
            prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
            boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)

        inference_scheduler.set_timesteps(num_steps, device=device)
        timesteps = inference_scheduler.timesteps
        
        num_channels_latents = self.unet.config.in_channels - 2
        latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
        onset_emb = self.encode_channel(input_dict["onset"]).repeat_interleave(num_samples_per_prompt, 0)
        onset_latents = torch.cat((onset_emb, latents), dim=1)

        num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
        progress_bar = tqdm(range(num_steps), disable=disable_progress)
        
        for i, t in tqdm(enumerate(timesteps)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([onset_latents] * 2) if classifier_free_guidance else onset_latents
            latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
            noise_pred = self.unet(
                latent_model_input, t, encoder_hidden_states=prompt_embeds,
                encoder_attention_mask=boolean_prompt_mask
            ).sample

            # perform guidance
            if classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
            onset_latents = torch.cat((onset_emb, latents), dim=1)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
                progress_bar.update(1)

        return latents
    
##############################
### Demo utils
##############################
from sklearn.metrics.pairwise import cosine_similarity
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
from llm_preprocess import get_event
class PicoDiffusion(ClapText_Onset_2_Audio_Diffusion):
    def __init__(self,      
        scheduler_name,
        unet_model_config_path=None,
        snr_gamma=None,
        uncondition=False,
        freeze_text_encoder_ckpt=None,
        diffusion_pt=None,
    ):
        super().__init__(scheduler_name, unet_model_config_path, snr_gamma, uncondition)
        self.freeze_text_encoder = laion_clap.CLAP_Module(enable_fusion=False)
    
        #load pretrain params
        ckpt = clap_load_state_dict(freeze_text_encoder_ckpt, skip_params=True)
        del_parameter_key = ["text_branch.embeddings.position_ids"]
        ckpt = {f"freeze_text_encoder.model.{k}":v for k, v in ckpt.items() if k not in del_parameter_key}
        #diffusion_ckpt = torch.load(diffusion_pt, map_location=self.device)
        diffusion_ckpt = torch.load(diffusion_pt, map_location="cpu")
        del diffusion_ckpt["class_emb.weight"]
        ckpt.update(diffusion_ckpt)
        self.load_state_dict(ckpt)

        self.event_list = get_event()
        self.events_emb = self.freeze_text_encoder.get_text_embedding(self.event_list, use_tensor=False)

        
    @torch.no_grad()
    def demo_inference(self, timestampCaption, scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True):
        #"timestampCaption": "event1__onset1-offset1_onset2-offset2--event2__onset1-offset1"
        #"timestampCaption": "event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1."
        device = self.device   

        timestamp_matrix = np.zeros((32, 256))
        events = []
        timestampCaption = timestampCaption.rstrip('.')
        for event_timestamp in timestampCaption.split(' and '):
            # event_timestamp : event1__onset1-offset1_onset2-offset2
            (event, instance) = event_timestamp.split(' at ')
            
            # instance : onset1-offset1_onset2-offset2
            event_emb = self.freeze_text_encoder.get_text_embedding([event, ""], use_tensor=False)[0]
            event_id = np.argmax(cosine_similarity(event_emb.reshape(1, -1), self.events_emb))
            events.append(self.event_list[event_id])
            for start_end in instance.split('_'):
                (start, end) = start_end.split('-')         
                start, end = int(float(start)*250/10), int(float(end)*250/10)
                if end > 250: break
                timestamp_matrix[event_id, start: end] = 1
        
        #event_info = self.clap_scorer.get_text_embedding([" and ".join(events), ""], use_tensor=False)[0]
        event_info = self.freeze_text_encoder.get_text_embedding([" and ".join(events), ""], use_tensor=True)[0].unsqueeze(0)
        timestamp_matrix = torch.tensor(timestamp_matrix, dtype=torch.float32).unsqueeze(0).to(device)
        latents = self.inference({"onset":timestamp_matrix, "event_info":event_info.to(device)}, scheduler, num_steps, guidance_scale, num_samples_per_prompt, disable_progress)
                                 
        return latents