Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from .SubLayers import MultiHeadAttention, PositionwiseFeedForward | |
class FFTBlock(torch.nn.Module): | |
"""FFT Block""" | |
def __init__(self, d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=0.1): | |
super(FFTBlock, self).__init__() | |
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) | |
self.pos_ffn = PositionwiseFeedForward( | |
d_model, d_inner, kernel_size, dropout=dropout | |
) | |
def forward(self, enc_input, mask=None, slf_attn_mask=None): | |
enc_output, enc_slf_attn = self.slf_attn( | |
enc_input, enc_input, enc_input, mask=slf_attn_mask | |
) | |
enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0) | |
enc_output = self.pos_ffn(enc_output) | |
enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0) | |
return enc_output, enc_slf_attn | |
class ConvNorm(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=None, | |
dilation=1, | |
bias=True, | |
w_init_gain="linear", | |
): | |
super(ConvNorm, self).__init__() | |
if padding is None: | |
assert kernel_size % 2 == 1 | |
padding = int(dilation * (kernel_size - 1) / 2) | |
self.conv = torch.nn.Conv1d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias, | |
) | |
def forward(self, signal): | |
conv_signal = self.conv(signal) | |
return conv_signal | |
class PostNet(nn.Module): | |
""" | |
PostNet: Five 1-d convolution with 512 channels and kernel size 5 | |
""" | |
def __init__( | |
self, | |
n_mel_channels=80, | |
postnet_embedding_dim=512, | |
postnet_kernel_size=5, | |
postnet_n_convolutions=5, | |
): | |
super(PostNet, self).__init__() | |
self.convolutions = nn.ModuleList() | |
self.convolutions.append( | |
nn.Sequential( | |
ConvNorm( | |
n_mel_channels, | |
postnet_embedding_dim, | |
kernel_size=postnet_kernel_size, | |
stride=1, | |
padding=int((postnet_kernel_size - 1) / 2), | |
dilation=1, | |
w_init_gain="tanh", | |
), | |
nn.BatchNorm1d(postnet_embedding_dim), | |
) | |
) | |
for i in range(1, postnet_n_convolutions - 1): | |
self.convolutions.append( | |
nn.Sequential( | |
ConvNorm( | |
postnet_embedding_dim, | |
postnet_embedding_dim, | |
kernel_size=postnet_kernel_size, | |
stride=1, | |
padding=int((postnet_kernel_size - 1) / 2), | |
dilation=1, | |
w_init_gain="tanh", | |
), | |
nn.BatchNorm1d(postnet_embedding_dim), | |
) | |
) | |
self.convolutions.append( | |
nn.Sequential( | |
ConvNorm( | |
postnet_embedding_dim, | |
n_mel_channels, | |
kernel_size=postnet_kernel_size, | |
stride=1, | |
padding=int((postnet_kernel_size - 1) / 2), | |
dilation=1, | |
w_init_gain="linear", | |
), | |
nn.BatchNorm1d(n_mel_channels), | |
) | |
) | |
def forward(self, x): | |
x = x.contiguous().transpose(1, 2) | |
for i in range(len(self.convolutions) - 1): | |
x = F.dropout(torch.tanh(self.convolutions[i](x)), 0.5, self.training) | |
x = F.dropout(self.convolutions[-1](x), 0.5, self.training) | |
x = x.contiguous().transpose(1, 2) | |
return x | |