Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch import nn | |
from torch.nn import Parameter | |
import torch.nn.functional as F | |
import numpy as np | |
class StyleAdaptiveLayerNorm(nn.Module): | |
def __init__(self, normalized_shape, eps=1e-5): | |
super().__init__() | |
self.in_dim = normalized_shape | |
self.norm = nn.LayerNorm(self.in_dim, eps=eps, elementwise_affine=False) | |
self.style = nn.Linear(self.in_dim, self.in_dim * 2) | |
self.style.bias.data[: self.in_dim] = 1 | |
self.style.bias.data[self.in_dim :] = 0 | |
def forward(self, x, condition): | |
# x: (B, T, d); condition: (B, T, d) | |
style = self.style(torch.mean(condition, dim=1, keepdim=True)) | |
gamma, beta = style.chunk(2, -1) | |
out = self.norm(x) | |
out = gamma * out + beta | |
return out | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout, max_len=5000): | |
super().__init__() | |
self.dropout = dropout | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) | |
) | |
pe = torch.zeros(max_len, 1, d_model) | |
pe[:, 0, 0::2] = torch.sin(position * div_term) | |
pe[:, 0, 1::2] = torch.cos(position * div_term) | |
self.register_buffer("pe", pe) | |
def forward(self, x): | |
x = x + self.pe[: x.size(0)] | |
return F.dropout(x, self.dropout, training=self.training) | |
class TransformerFFNLayer(nn.Module): | |
def __init__( | |
self, encoder_hidden, conv_filter_size, conv_kernel_size, encoder_dropout | |
): | |
super().__init__() | |
self.encoder_hidden = encoder_hidden | |
self.conv_filter_size = conv_filter_size | |
self.conv_kernel_size = conv_kernel_size | |
self.encoder_dropout = encoder_dropout | |
self.ffn_1 = nn.Conv1d( | |
self.encoder_hidden, | |
self.conv_filter_size, | |
self.conv_kernel_size, | |
padding=self.conv_kernel_size // 2, | |
) | |
self.ffn_1.weight.data.normal_(0.0, 0.02) | |
self.ffn_2 = nn.Linear(self.conv_filter_size, self.encoder_hidden) | |
self.ffn_2.weight.data.normal_(0.0, 0.02) | |
def forward(self, x): | |
# x: (B, T, d) | |
x = self.ffn_1(x.permute(0, 2, 1)).permute( | |
0, 2, 1 | |
) # (B, T, d) -> (B, d, T) -> (B, T, d) | |
x = F.relu(x) | |
x = F.dropout(x, self.encoder_dropout, training=self.training) | |
x = self.ffn_2(x) | |
return x | |
class TransformerEncoderLayer(nn.Module): | |
def __init__( | |
self, | |
encoder_hidden, | |
encoder_head, | |
conv_filter_size, | |
conv_kernel_size, | |
encoder_dropout, | |
use_cln, | |
): | |
super().__init__() | |
self.encoder_hidden = encoder_hidden | |
self.encoder_head = encoder_head | |
self.conv_filter_size = conv_filter_size | |
self.conv_kernel_size = conv_kernel_size | |
self.encoder_dropout = encoder_dropout | |
self.use_cln = use_cln | |
if not self.use_cln: | |
self.ln_1 = nn.LayerNorm(self.encoder_hidden) | |
self.ln_2 = nn.LayerNorm(self.encoder_hidden) | |
else: | |
self.ln_1 = StyleAdaptiveLayerNorm(self.encoder_hidden) | |
self.ln_2 = StyleAdaptiveLayerNorm(self.encoder_hidden) | |
self.self_attn = nn.MultiheadAttention( | |
self.encoder_hidden, self.encoder_head, batch_first=True | |
) | |
self.ffn = TransformerFFNLayer( | |
self.encoder_hidden, | |
self.conv_filter_size, | |
self.conv_kernel_size, | |
self.encoder_dropout, | |
) | |
def forward(self, x, key_padding_mask, conditon=None): | |
# x: (B, T, d); key_padding_mask: (B, T), mask is 0; condition: (B, T, d) | |
# self attention | |
residual = x | |
if self.use_cln: | |
x = self.ln_1(x, conditon) | |
else: | |
x = self.ln_1(x) | |
if key_padding_mask != None: | |
key_padding_mask_input = ~(key_padding_mask.bool()) | |
else: | |
key_padding_mask_input = None | |
x, _ = self.self_attn( | |
query=x, key=x, value=x, key_padding_mask=key_padding_mask_input | |
) | |
x = F.dropout(x, self.encoder_dropout, training=self.training) | |
x = residual + x | |
# ffn | |
residual = x | |
if self.use_cln: | |
x = self.ln_2(x, conditon) | |
else: | |
x = self.ln_2(x) | |
x = self.ffn(x) | |
x = residual + x | |
return x | |
class TransformerEncoder(nn.Module): | |
def __init__( | |
self, | |
enc_emb_tokens=None, | |
encoder_layer=None, | |
encoder_hidden=None, | |
encoder_head=None, | |
conv_filter_size=None, | |
conv_kernel_size=None, | |
encoder_dropout=None, | |
use_cln=None, | |
cfg=None, | |
): | |
super().__init__() | |
self.encoder_layer = ( | |
encoder_layer if encoder_layer is not None else cfg.encoder_layer | |
) | |
self.encoder_hidden = ( | |
encoder_hidden if encoder_hidden is not None else cfg.encoder_hidden | |
) | |
self.encoder_head = ( | |
encoder_head if encoder_head is not None else cfg.encoder_head | |
) | |
self.conv_filter_size = ( | |
conv_filter_size if conv_filter_size is not None else cfg.conv_filter_size | |
) | |
self.conv_kernel_size = ( | |
conv_kernel_size if conv_kernel_size is not None else cfg.conv_kernel_size | |
) | |
self.encoder_dropout = ( | |
encoder_dropout if encoder_dropout is not None else cfg.encoder_dropout | |
) | |
self.use_cln = use_cln if use_cln is not None else cfg.use_cln | |
if enc_emb_tokens != None: | |
self.use_enc_emb = True | |
self.enc_emb_tokens = enc_emb_tokens | |
else: | |
self.use_enc_emb = False | |
self.position_emb = PositionalEncoding( | |
self.encoder_hidden, self.encoder_dropout | |
) | |
self.layers = nn.ModuleList([]) | |
self.layers.extend( | |
[ | |
TransformerEncoderLayer( | |
self.encoder_hidden, | |
self.encoder_head, | |
self.conv_filter_size, | |
self.conv_kernel_size, | |
self.encoder_dropout, | |
self.use_cln, | |
) | |
for i in range(self.encoder_layer) | |
] | |
) | |
if self.use_cln: | |
self.last_ln = StyleAdaptiveLayerNorm(self.encoder_hidden) | |
else: | |
self.last_ln = nn.LayerNorm(self.encoder_hidden) | |
def forward(self, x, key_padding_mask, condition=None): | |
if len(x.shape) == 2 and self.use_enc_emb: | |
x = self.enc_emb_tokens(x) | |
x = self.position_emb(x) | |
else: | |
x = self.position_emb(x) # (B, T, d) | |
for layer in self.layers: | |
x = layer(x, key_padding_mask, condition) | |
if self.use_cln: | |
x = self.last_ln(x, condition) | |
else: | |
x = self.last_ln(x) | |
return x | |
class DurationPredictor(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
self.input_size = cfg.input_size | |
self.filter_size = cfg.filter_size | |
self.kernel_size = cfg.kernel_size | |
self.conv_layers = cfg.conv_layers | |
self.cross_attn_per_layer = cfg.cross_attn_per_layer | |
self.attn_head = cfg.attn_head | |
self.drop_out = cfg.drop_out | |
self.conv = nn.ModuleList() | |
self.cattn = nn.ModuleList() | |
for idx in range(self.conv_layers): | |
in_dim = self.input_size if idx == 0 else self.filter_size | |
self.conv += [ | |
nn.Sequential( | |
nn.Conv1d( | |
in_dim, | |
self.filter_size, | |
self.kernel_size, | |
padding=self.kernel_size // 2, | |
), | |
nn.ReLU(), | |
nn.LayerNorm(self.filter_size), | |
nn.Dropout(self.drop_out), | |
) | |
] | |
if idx % self.cross_attn_per_layer == 0: | |
self.cattn.append( | |
torch.nn.Sequential( | |
nn.MultiheadAttention( | |
self.filter_size, | |
self.attn_head, | |
batch_first=True, | |
kdim=self.filter_size, | |
vdim=self.filter_size, | |
), | |
nn.LayerNorm(self.filter_size), | |
nn.Dropout(0.2), | |
) | |
) | |
self.linear = nn.Linear(self.filter_size, 1) | |
self.linear.weight.data.normal_(0.0, 0.02) | |
def forward(self, x, mask, ref_emb, ref_mask): | |
""" | |
input: | |
x: (B, N, d) | |
mask: (B, N), mask is 0 | |
ref_emb: (B, d, T') | |
ref_mask: (B, T'), mask is 0 | |
output: | |
dur_pred: (B, N) | |
dur_pred_log: (B, N) | |
dur_pred_round: (B, N) | |
""" | |
input_ref_mask = ~(ref_mask.bool()) # (B, T') | |
# print(input_ref_mask) | |
x = x.transpose(1, -1) # (B, N, d) -> (B, d, N) | |
for idx, (conv, act, ln, dropout) in enumerate(self.conv): | |
res = x | |
# print(torch.min(x), torch.max(x)) | |
if idx % self.cross_attn_per_layer == 0: | |
attn_idx = idx // self.cross_attn_per_layer | |
attn, attn_ln, attn_drop = self.cattn[attn_idx] | |
attn_res = y_ = x.transpose(1, 2) # (B, d, N) -> (B, N, d) | |
y_ = attn_ln(y_) | |
# print(torch.min(y_), torch.min(y_)) | |
# print(torch.min(ref_emb), torch.max(ref_emb)) | |
y_, _ = attn( | |
y_, | |
ref_emb.transpose(1, 2), | |
ref_emb.transpose(1, 2), | |
key_padding_mask=input_ref_mask, | |
) | |
# y_, _ = attn(y_, ref_emb.transpose(1, 2), ref_emb.transpose(1, 2)) | |
# print(torch.min(y_), torch.min(y_)) | |
y_ = attn_drop(y_) | |
y_ = (y_ + attn_res) / math.sqrt(2.0) | |
x = y_.transpose(1, 2) | |
x = conv(x) | |
# print(torch.min(x), torch.max(x)) | |
x = act(x) | |
x = ln(x.transpose(1, 2)) | |
# print(torch.min(x), torch.max(x)) | |
x = x.transpose(1, 2) | |
x = dropout(x) | |
if idx != 0: | |
x += res | |
if mask is not None: | |
x = x * mask.to(x.dtype)[:, None, :] | |
x = self.linear(x.transpose(1, 2)) | |
x = torch.squeeze(x, -1) | |
dur_pred = x.exp() - 1 | |
dur_pred_round = torch.clamp(torch.round(x.exp() - 1), min=0).long() | |
return { | |
"dur_pred_log": x, | |
"dur_pred": dur_pred, | |
"dur_pred_round": dur_pred_round, | |
} | |
class PitchPredictor(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
self.input_size = cfg.input_size | |
self.filter_size = cfg.filter_size | |
self.kernel_size = cfg.kernel_size | |
self.conv_layers = cfg.conv_layers | |
self.cross_attn_per_layer = cfg.cross_attn_per_layer | |
self.attn_head = cfg.attn_head | |
self.drop_out = cfg.drop_out | |
self.conv = nn.ModuleList() | |
self.cattn = nn.ModuleList() | |
for idx in range(self.conv_layers): | |
in_dim = self.input_size if idx == 0 else self.filter_size | |
self.conv += [ | |
nn.Sequential( | |
nn.Conv1d( | |
in_dim, | |
self.filter_size, | |
self.kernel_size, | |
padding=self.kernel_size // 2, | |
), | |
nn.ReLU(), | |
nn.LayerNorm(self.filter_size), | |
nn.Dropout(self.drop_out), | |
) | |
] | |
if idx % self.cross_attn_per_layer == 0: | |
self.cattn.append( | |
torch.nn.Sequential( | |
nn.MultiheadAttention( | |
self.filter_size, | |
self.attn_head, | |
batch_first=True, | |
kdim=self.filter_size, | |
vdim=self.filter_size, | |
), | |
nn.LayerNorm(self.filter_size), | |
nn.Dropout(0.2), | |
) | |
) | |
self.linear = nn.Linear(self.filter_size, 1) | |
self.linear.weight.data.normal_(0.0, 0.02) | |
def forward(self, x, mask, ref_emb, ref_mask): | |
""" | |
input: | |
x: (B, N, d) | |
mask: (B, N), mask is 0 | |
ref_emb: (B, d, T') | |
ref_mask: (B, T'), mask is 0 | |
output: | |
pitch_pred: (B, T) | |
""" | |
input_ref_mask = ~(ref_mask.bool()) # (B, T') | |
x = x.transpose(1, -1) # (B, N, d) -> (B, d, N) | |
for idx, (conv, act, ln, dropout) in enumerate(self.conv): | |
res = x | |
if idx % self.cross_attn_per_layer == 0: | |
attn_idx = idx // self.cross_attn_per_layer | |
attn, attn_ln, attn_drop = self.cattn[attn_idx] | |
attn_res = y_ = x.transpose(1, 2) # (B, d, N) -> (B, N, d) | |
y_ = attn_ln(y_) | |
y_, _ = attn( | |
y_, | |
ref_emb.transpose(1, 2), | |
ref_emb.transpose(1, 2), | |
key_padding_mask=input_ref_mask, | |
) | |
# y_, _ = attn(y_, ref_emb.transpose(1, 2), ref_emb.transpose(1, 2)) | |
y_ = attn_drop(y_) | |
y_ = (y_ + attn_res) / math.sqrt(2.0) | |
x = y_.transpose(1, 2) | |
x = conv(x) | |
x = act(x) | |
x = ln(x.transpose(1, 2)) | |
x = x.transpose(1, 2) | |
x = dropout(x) | |
if idx != 0: | |
x += res | |
x = self.linear(x.transpose(1, 2)) | |
x = torch.squeeze(x, -1) | |
return x | |
def pad(input_ele, mel_max_length=None): | |
if mel_max_length: | |
max_len = mel_max_length | |
else: | |
max_len = max([input_ele[i].size(0) for i in range(len(input_ele))]) | |
out_list = list() | |
for i, batch in enumerate(input_ele): | |
if len(batch.shape) == 1: | |
one_batch_padded = F.pad( | |
batch, (0, max_len - batch.size(0)), "constant", 0.0 | |
) | |
elif len(batch.shape) == 2: | |
one_batch_padded = F.pad( | |
batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0 | |
) | |
out_list.append(one_batch_padded) | |
out_padded = torch.stack(out_list) | |
return out_padded | |
class LengthRegulator(nn.Module): | |
"""Length Regulator""" | |
def __init__(self): | |
super(LengthRegulator, self).__init__() | |
def LR(self, x, duration, max_len): | |
device = x.device | |
output = list() | |
mel_len = list() | |
for batch, expand_target in zip(x, duration): | |
expanded = self.expand(batch, expand_target) | |
output.append(expanded) | |
mel_len.append(expanded.shape[0]) | |
if max_len is not None: | |
output = pad(output, max_len) | |
else: | |
output = pad(output) | |
return output, torch.LongTensor(mel_len).to(device) | |
def expand(self, batch, predicted): | |
out = list() | |
for i, vec in enumerate(batch): | |
expand_size = predicted[i].item() | |
out.append(vec.expand(max(int(expand_size), 0), -1)) | |
out = torch.cat(out, 0) | |
return out | |
def forward(self, x, duration, max_len): | |
output, mel_len = self.LR(x, duration, max_len) | |
return output, mel_len | |