File size: 11,097 Bytes
b725c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

"""DepthwiseConv2dSubsampling4 and TimeReductionLayer definition."""

import torch
import torch.nn as nn
import torch.nn.functional as F
from modules.wenet_extractor.transformer.subsampling import BaseSubsampling
from typing import Tuple
from modules.wenet_extractor.squeezeformer.conv2d import Conv2dValid


class DepthwiseConv2dSubsampling4(BaseSubsampling):
    """Depthwise Convolutional 2D subsampling (to 1/4 length).

    Args:
        idim (int): Input dimension.
        odim (int): Output dimension.
        pos_enc_class (nn.Module): position encoding class.
        dw_stride (int): Whether do depthwise convolution.
        input_size (int): filter bank dimension.

    """

    def __init__(
        self,
        idim: int,
        odim: int,
        pos_enc_class: torch.nn.Module,
        dw_stride: bool = False,
        input_size: int = 80,
        input_dropout_rate: float = 0.1,
        init_weights: bool = True,
    ):
        super(DepthwiseConv2dSubsampling4, self).__init__()
        self.idim = idim
        self.odim = odim
        self.pw_conv = nn.Conv2d(
            in_channels=idim, out_channels=odim, kernel_size=3, stride=2
        )
        self.act1 = nn.ReLU()
        self.dw_conv = nn.Conv2d(
            in_channels=odim,
            out_channels=odim,
            kernel_size=3,
            stride=2,
            groups=odim if dw_stride else 1,
        )
        self.act2 = nn.ReLU()
        self.pos_enc = pos_enc_class
        self.input_proj = nn.Sequential(
            nn.Linear(odim * (((input_size - 1) // 2 - 1) // 2), odim),
            nn.Dropout(p=input_dropout_rate),
        )
        if init_weights:
            linear_max = (odim * input_size / 4) ** -0.5
            torch.nn.init.uniform_(
                self.input_proj.state_dict()["0.weight"], -linear_max, linear_max
            )
            torch.nn.init.uniform_(
                self.input_proj.state_dict()["0.bias"], -linear_max, linear_max
            )
        self.subsampling_rate = 4
        # 6 = (3 - 1) * 1 + (3 - 1) * 2
        self.right_context = 6

    def forward(
        self, x: torch.Tensor, x_mask: torch.Tensor, offset: int = 0
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        x = x.unsqueeze(1)  # (b, c=1, t, f)
        x = self.pw_conv(x)
        x = self.act1(x)
        x = self.dw_conv(x)
        x = self.act2(x)
        b, c, t, f = x.size()
        x = x.permute(0, 2, 1, 3)
        x = x.contiguous().view(b, t, c * f)
        x, pos_emb = self.pos_enc(x, offset)
        x = self.input_proj(x)
        return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-2:2]


class TimeReductionLayer1D(nn.Module):
    """
    Modified NeMo,
    Squeezeformer Time Reduction procedure.
    Downsamples the audio by `stride` in the time dimension.
    Args:
        channel (int): input dimension of
                       MultiheadAttentionMechanism and PositionwiseFeedForward
        out_dim (int): Output dimension of the module.
        kernel_size (int): Conv kernel size for
                           depthwise convolution in convolution module
        stride (int): Downsampling factor in time dimension.
    """

    def __init__(
        self, channel: int, out_dim: int, kernel_size: int = 5, stride: int = 2
    ):
        super(TimeReductionLayer1D, self).__init__()

        self.channel = channel
        self.out_dim = out_dim
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = max(0, self.kernel_size - self.stride)

        self.dw_conv = nn.Conv1d(
            in_channels=channel,
            out_channels=channel,
            kernel_size=kernel_size,
            stride=stride,
            padding=self.padding,
            groups=channel,
        )

        self.pw_conv = nn.Conv1d(
            in_channels=channel,
            out_channels=out_dim,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
        )

        self.init_weights()

    def init_weights(self):
        dw_max = self.kernel_size**-0.5
        pw_max = self.channel**-0.5
        torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max)
        torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max)
        torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max)
        torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max)

    def forward(
        self,
        xs,
        xs_lens: torch.Tensor,
        mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
    ):
        xs = xs.transpose(1, 2)  # [B, C, T]
        xs = xs.masked_fill(mask_pad.eq(0), 0.0)

        xs = self.dw_conv(xs)
        xs = self.pw_conv(xs)

        xs = xs.transpose(1, 2)  # [B, T, C]

        B, T, D = xs.size()
        mask = mask[:, :: self.stride, :: self.stride]
        mask_pad = mask_pad[:, :, :: self.stride]
        L = mask_pad.size(-1)
        # For JIT exporting, we remove F.pad operator.
        if L - T < 0:
            xs = xs[:, : L - T, :].contiguous()
        else:
            dummy_pad = torch.zeros(B, L - T, D, device=xs.device)
            xs = torch.cat([xs, dummy_pad], dim=1)

        xs_lens = torch.div(xs_lens + 1, 2, rounding_mode="trunc")
        return xs, xs_lens, mask, mask_pad


class TimeReductionLayer2D(nn.Module):
    def __init__(self, kernel_size: int = 5, stride: int = 2, encoder_dim: int = 256):
        super(TimeReductionLayer2D, self).__init__()
        self.encoder_dim = encoder_dim
        self.kernel_size = kernel_size
        self.dw_conv = Conv2dValid(
            in_channels=encoder_dim,
            out_channels=encoder_dim,
            kernel_size=(kernel_size, 1),
            stride=stride,
            valid_trigy=True,
        )
        self.pw_conv = Conv2dValid(
            in_channels=encoder_dim,
            out_channels=encoder_dim,
            kernel_size=1,
            stride=1,
            valid_trigx=False,
            valid_trigy=False,
        )

        self.kernel_size = kernel_size
        self.stride = stride
        self.init_weights()

    def init_weights(self):
        dw_max = self.kernel_size**-0.5
        pw_max = self.encoder_dim**-0.5
        torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max)
        torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max)
        torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max)
        torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max)

    def forward(
        self,
        xs: torch.Tensor,
        xs_lens: torch.Tensor,
        mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        xs = xs.masked_fill(mask_pad.transpose(1, 2).eq(0), 0.0)
        xs = xs.unsqueeze(2)
        padding1 = self.kernel_size - self.stride
        xs = F.pad(xs, (0, 0, 0, 0, 0, padding1, 0, 0), mode="constant", value=0.0)
        xs = self.dw_conv(xs.permute(0, 3, 1, 2))
        xs = self.pw_conv(xs).permute(0, 3, 2, 1).squeeze(1).contiguous()
        tmp_length = xs.size(1)
        xs_lens = torch.div(xs_lens + 1, 2, rounding_mode="trunc")
        padding2 = max(0, (xs_lens.max() - tmp_length).data.item())
        batch_size, hidden = xs.size(0), xs.size(-1)
        dummy_pad = torch.zeros(batch_size, padding2, hidden, device=xs.device)
        xs = torch.cat([xs, dummy_pad], dim=1)
        mask = mask[:, ::2, ::2]
        mask_pad = mask_pad[:, :, ::2]
        return xs, xs_lens, mask, mask_pad


class TimeReductionLayerStream(nn.Module):
    """
    Squeezeformer Time Reduction procedure.
    Downsamples the audio by `stride` in the time dimension.
    Args:
        channel (int): input dimension of
            MultiheadAttentionMechanism and PositionwiseFeedForward
        out_dim (int): Output dimension of the module.
        kernel_size (int): Conv kernel size for
            depthwise convolution in convolution module
        stride (int): Downsampling factor in time dimension.
    """

    def __init__(
        self, channel: int, out_dim: int, kernel_size: int = 1, stride: int = 2
    ):
        super(TimeReductionLayerStream, self).__init__()

        self.channel = channel
        self.out_dim = out_dim
        self.kernel_size = kernel_size
        self.stride = stride

        self.dw_conv = nn.Conv1d(
            in_channels=channel,
            out_channels=channel,
            kernel_size=kernel_size,
            stride=stride,
            padding=0,
            groups=channel,
        )

        self.pw_conv = nn.Conv1d(
            in_channels=channel,
            out_channels=out_dim,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
        )

        self.init_weights()

    def init_weights(self):
        dw_max = self.kernel_size**-0.5
        pw_max = self.channel**-0.5
        torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max)
        torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max)
        torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max)
        torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max)

    def forward(
        self,
        xs,
        xs_lens: torch.Tensor,
        mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
    ):
        xs = xs.transpose(1, 2)  # [B, C, T]
        xs = xs.masked_fill(mask_pad.eq(0), 0.0)

        xs = self.dw_conv(xs)
        xs = self.pw_conv(xs)

        xs = xs.transpose(1, 2)  # [B, T, C]

        B, T, D = xs.size()
        mask = mask[:, :: self.stride, :: self.stride]
        mask_pad = mask_pad[:, :, :: self.stride]
        L = mask_pad.size(-1)
        # For JIT exporting, we remove F.pad operator.
        if L - T < 0:
            xs = xs[:, : L - T, :].contiguous()
        else:
            dummy_pad = torch.zeros(B, L - T, D, device=xs.device)
            xs = torch.cat([xs, dummy_pad], dim=1)

        xs_lens = torch.div(xs_lens + 1, 2, rounding_mode="trunc")
        return xs, xs_lens, mask, mask_pad