File size: 13,696 Bytes
b725c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import copy
from functools import partial
from typing import Any, Callable, List, Optional, Union

import torch
from torch import Tensor, nn
from torch.nn import functional as F

from modules.norms import AdaptiveLayerNorm, LayerNorm, BalancedBasicNorm, IdentityNorm
from modules.transformer import MultiheadAttention
from modules.general.scaling import BalancedDoubleSwish


class TransformerEncoderLayer(nn.Module):
    __constants__ = ["batch_first", "norm_first"]

    def __init__(
        self,
        d_model: int,
        nhead: int,
        dim_feedforward: int = 2048,
        dropout: float = 0.1,
        activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
        batch_first: bool = False,
        norm_first: bool = False,
        device=None,
        dtype=None,
        linear1_self_attention_cls: nn.Module = nn.Linear,
        linear2_self_attention_cls: nn.Module = nn.Linear,
        linear1_feedforward_cls: nn.Module = nn.Linear,
        linear2_feedforward_cls: nn.Module = nn.Linear,
        layer_norm_cls: nn.Module = LayerNorm,
        layer_norm_eps: float = 1e-5,
        adaptive_layer_norm=False,
    ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(
            d_model,
            nhead,
            dropout=dropout,
            batch_first=batch_first,
            linear1_cls=linear1_self_attention_cls,
            linear2_cls=linear2_self_attention_cls,
            **factory_kwargs,
        )

        # Implementation of Feedforward model
        self.linear1 = linear1_feedforward_cls(
            d_model, dim_feedforward, **factory_kwargs
        )
        self.dropout = nn.Dropout(dropout)
        self.linear2 = linear2_feedforward_cls(
            dim_feedforward, d_model, **factory_kwargs
        )

        self.norm_first = norm_first
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        if isinstance(activation, str):
            activation = _get_activation_fn(activation)
        elif isinstance(activation, partial):
            activation = activation(d_model)
        elif activation == BalancedDoubleSwish:
            activation = BalancedDoubleSwish(d_model)

        self.activation = activation

        norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
        if layer_norm_cls == IdentityNorm:
            norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
        else:
            norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)

        if adaptive_layer_norm:
            self.norm1 = AdaptiveLayerNorm(d_model, norm1)
            self.norm2 = AdaptiveLayerNorm(d_model, norm2)
        else:
            self.norm1 = norm1
            self.norm2 = norm2

    def __setstate__(self, state):
        super(TransformerEncoderLayer, self).__setstate__(state)
        if not hasattr(self, "activation"):
            self.activation = F.relu

    def forward(
        self,
        src: Tensor,
        src_mask: Optional[Tensor] = None,
        src_key_padding_mask: Optional[Tensor] = None,
    ) -> Tensor:
        r"""Pass the input through the encoder layer.

        Args:
            src: the sequence to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        x, stage_embedding = src, None
        is_src_tuple = False
        if isinstance(src, tuple):
            x, stage_embedding = src
            is_src_tuple = True

        if src_key_padding_mask is not None:
            _skpm_dtype = src_key_padding_mask.dtype
            if _skpm_dtype != torch.bool and not torch.is_floating_point(
                src_key_padding_mask
            ):
                raise AssertionError(
                    "only bool and floating types of key_padding_mask are supported"
                )

        if self.norm_first:
            x = x + self._sa_block(
                self.norm1(x, stage_embedding),
                src_mask,
                src_key_padding_mask,
            )
            x = x + self._ff_block(self.norm2(x, stage_embedding))
        else:
            x = self.norm1(
                x + self._sa_block(x, src_mask, src_key_padding_mask),
                stage_embedding,
            )
            x = self.norm2(x + self._ff_block(x), stage_embedding)

        if is_src_tuple:
            return (x, stage_embedding)
        return x

    def _sa_block(
        self,
        x: Tensor,
        attn_mask: Optional[Tensor],
        key_padding_mask: Optional[Tensor],
    ) -> Tensor:
        x = self.self_attn(
            x,
            x,
            x,
            attn_mask=attn_mask,
            key_padding_mask=key_padding_mask,
            need_weights=False,
        )[0]
        return self.dropout1(x)

    def _ff_block(self, x: Tensor) -> Tensor:
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        return self.dropout2(x)


class TransformerEncoder(nn.Module):
    """TransformerEncoder is a stack of N encoder layers."""

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(
        self,
        src: Tensor,
        mask: Optional[Tensor] = None,
        src_key_padding_mask: Optional[Tensor] = None,
        return_layer_states: bool = False,
    ) -> Tensor:
        # Pass the input through the encoder layers
        output = src
        layer_states = [] if return_layer_states else None

        for mod in self.layers:
            output = self._apply_module(
                mod, output, mask, src_key_padding_mask, layer_states
            )

        if self.norm is not None:
            output = self.norm(output)

        return (layer_states, output) if return_layer_states else output

    def _apply_module(self, module, output, mask, key_padding_mask, layer_states):
        # Apply a single transformer module
        output = module(output, src_mask=mask, src_key_padding_mask=key_padding_mask)
        if layer_states is not None:
            layer_states.append(output)
        return output


class TransformerDecoderLayer(nn.Module):
    __constants__ = ["batch_first", "norm_first"]

    def __init__(
        self,
        d_model: int,
        nhead: int,
        dim_feedforward: int = 2048,
        dropout: float = 0.1,
        activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
        linear1_self_attention_cls: nn.Module = nn.Linear,
        linear2_self_attention_cls: nn.Module = nn.Linear,
        linear1_feedforward_cls: nn.Module = nn.Linear,
        linear2_feedforward_cls: nn.Module = nn.Linear,
        batch_first: bool = False,
        norm_first: bool = False,
        device=None,
        dtype=None,
        layer_norm_cls: nn.Module = LayerNorm,
        layer_norm_eps: float = 1e-5,
        adaptive_layer_norm=False,
    ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super(TransformerDecoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(
            d_model,
            nhead,
            dropout=dropout,
            batch_first=batch_first,
            linear1_cls=linear1_self_attention_cls,
            linear2_cls=linear2_self_attention_cls,
            **factory_kwargs,
        )
        self.multihead_attn = MultiheadAttention(
            d_model,
            nhead,
            dropout=dropout,
            batch_first=batch_first,
            linear1_cls=linear1_self_attention_cls,
            linear2_cls=linear2_self_attention_cls,
            **factory_kwargs,
        )
        self.linear1 = linear1_feedforward_cls(
            d_model, dim_feedforward, **factory_kwargs
        )
        self.dropout = nn.Dropout(dropout)
        self.linear2 = linear2_feedforward_cls(
            dim_feedforward, d_model, **factory_kwargs
        )

        self.norm_first = norm_first
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = self._get_activation_fn(activation)
        self.norm1, self.norm2, self.norm3 = self._init_norm_layers(
            d_model, layer_norm_cls, layer_norm_eps, adaptive_layer_norm, factory_kwargs
        )

    def forward(
        self,
        tgt: Tensor,
        memory: Tensor,
        tgt_mask: Optional[Tensor] = None,
        memory_mask: Optional[Tensor] = None,
        tgt_key_padding_mask: Optional[Tensor] = None,
        memory_key_padding_mask: Optional[Tensor] = None,
    ) -> Tensor:
        r"""Pass the inputs (and mask) through the decoder layer.

        Args:
            tgt: the sequence to the decoder layer (required).
            memory: the sequence from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        tgt_is_tuple = False
        if isinstance(tgt, tuple):
            x, stage_embedding = tgt
            tgt_is_tuple = True
        else:
            x, stage_embedding = tgt, None

        if self.norm_first:
            x = x + self._sa_block(
                self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask
            )
            x = x + self._mha_block(
                self.norm2(x, stage_embedding),
                memory,
                memory_mask,
                memory_key_padding_mask,
            )
            x = x + self._ff_block(self.norm3(x, stage_embedding))
        else:
            x = self.norm1(
                x + self._sa_block(x, tgt_mask, tgt_key_padding_mask),
                stage_embedding,
            )
            x = self.norm2(
                x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask),
                stage_embedding,
            )
            x = self.norm3(x + self._ff_block(x), stage_embedding)

        if tgt_is_tuple:
            return (x, stage_embedding)
        return x

    def _sa_block(
        self,
        x: Tensor,
        attn_mask: Optional[Tensor],
        key_padding_mask: Optional[Tensor],
    ) -> Tensor:
        x = self.self_attn(
            x,
            x,
            x,
            attn_mask=attn_mask,
            key_padding_mask=key_padding_mask,
            need_weights=False,
        )[0]
        return self.dropout1(x)

    def _mha_block(
        self,
        x: Tensor,
        mem: Tensor,
        attn_mask: Optional[Tensor],
        key_padding_mask: Optional[Tensor],
    ) -> Tensor:
        x = self.multihead_attn(
            x,
            mem,
            mem,
            attn_mask=attn_mask,
            key_padding_mask=key_padding_mask,
            need_weights=False,
        )[0]
        return self.dropout2(x)

    def _ff_block(self, x: Tensor) -> Tensor:
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        return self.dropout3(x)

    def _get_activation_fn(self, activation):
        if isinstance(activation, str):
            return _get_activation_fn(activation)
        elif callable(activation):
            return activation
        else:
            raise ValueError("Unsupported activation type")

    def _init_norm_layers(
        self,
        d_model,
        layer_norm_cls,
        layer_norm_eps,
        adaptive_layer_norm,
        factory_kwargs,
    ):
        if adaptive_layer_norm:
            return (
                AdaptiveLayerNorm(
                    d_model,
                    layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs),
                ),
                AdaptiveLayerNorm(
                    d_model,
                    layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs),
                ),
                AdaptiveLayerNorm(
                    d_model,
                    layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs),
                ),
            )
        else:
            return (
                layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs),
                layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs),
                layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
                if layer_norm_cls != IdentityNorm
                else BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs),
            )


def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
    if activation == "relu":
        return F.relu
    elif activation == "gelu":
        return F.gelu

    raise RuntimeError("activation should be relu/gelu, not {}".format(activation))


class Transpose(nn.Identity):
    """(N, T, D) -> (N, D, T)"""

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return input.transpose(1, 2)