Spaces:
Sleeping
Sleeping
File size: 3,711 Bytes
b725c5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
# Pretrained Models Dependency
The models dependency of Amphion are as follows (sort alphabetically):
- [Pretrained Models Dependency](#pretrained-models-dependency)
- [Amphion Singing BigVGAN](#amphion-singing-bigvgan)
- [Amphion Speech HiFi-GAN](#amphion-speech-hifi-gan)
- [ContentVec](#contentvec)
- [WeNet](#wenet)
- [Whisper](#whisper)
- [RawNet3](#rawnet3)
The instructions about how to download them is displayed as follows.
## Amphion Singing BigVGAN
We fine-tune the official BigVGAN pretrained model with over 120 hours singing voice data. The fine-tuned checkpoint can be downloaded [here](https://cuhko365-my.sharepoint.com/:f:/g/personal/222042021_link_cuhk_edu_cn/EtiHh5JZ0_xGlYbyLLSoqBgBe9kI5q3ROY-SvBqefae-IA?e=dk4Pqa). You need to download the `400000.pt` and `args.json` files into `Amphion/pretrained/bigvgan`:
```
Amphion
β£ pretrained
β β£ bivgan
β β β£ 400000.pt
β β β£ args.json
```
## Amphion Speech HiFi-GAN
We trained our HiFi-GAN pretrained model with 685 hours speech data. Which can be downloaded [here](https://cuhko365-my.sharepoint.com/:f:/g/personal/xueliumeng_cuhk_edu_cn/Ei24hGJO_PVBopjhKje1uzEBqfhV9h89HoLrOoy9K8tzGg?e=ka7MCO). You need to download the whole folder of `hifigan_speech` into `Amphion/pretrained/hifigan`.
```
Amphion
β£ pretrained
β β£ hifigan
β β β£ hifigan_speech
β β β β£ log
β β β β£ result
β β β β£ checkpoint
β β β β£ args.json
```
## ContentVec
You can download the pretrained ContentVec model [here](https://github.com/auspicious3000/contentvec). Note that we use the `ContentVec_legacy-500 classes` checkpoint. Assume that you download the `checkpoint_best_legacy_500.pt` into the `Amphion/pretrained/contentvec`.
```
Amphion
β£ pretrained
β β£ contentvec
β β β£ checkpoint_best_legacy_500.pt
```
## WeNet
You can download the pretrained WeNet model [here](https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.md). Take the `wenetspeech` pretrained checkpoint as an example, assume you download the `wenetspeech_u2pp_conformer_exp.tar` into the `Amphion/pretrained/wenet`. Unzip it and modify its configuration file as follows:
```sh
cd Amphion/pretrained/wenet
### Unzip the expt dir
tar -xvf wenetspeech_u2pp_conformer_exp.tar.gz
### Specify the updated path in train.yaml
cd 20220506_u2pp_conformer_exp
vim train.yaml
# TODO: Change the value of "cmvn_file" (Line 2) to the absolute path of the `global_cmvn` file. (Eg: [YourPath]/Amphion/pretrained/wenet/20220506_u2pp_conformer_exp/global_cmvn)
```
The final file struture tree is like:
```
Amphion
β£ pretrained
β β£ wenet
β β β£ 20220506_u2pp_conformer_exp
β β β β£ final.pt
β β β β£ global_cmvn
β β β β£ train.yaml
β β β β£ units.txt
```
## Whisper
The official pretrained whisper checkpoints can be available [here](https://github.com/openai/whisper/blob/e58f28804528831904c3b6f2c0e473f346223433/whisper/__init__.py#L17). In Amphion, we use the `medium` whisper model by default. You can download it as follows:
```bash
cd Amphion/pretrained
mkdir whisper
cd whisper
wget https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt
```
The final file structure tree is like:
```
Amphion
β£ pretrained
β β£ whisper
β β β£ medium.pt
```
## RawNet3
The official pretrained RawNet3 checkpoints can be available [here](https://huggingface.co./jungjee/RawNet3). You need to download the `model.pt` file and put it in the folder.
The final file structure tree is like:
```
Amphion
β£ pretrained
β β£ rawnet3
β β β£ model.pt
```
|