import numpy as np import tensorflow as tf import librosa git clone https://huggingface.co./amongusrickroll68/MeloMind from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("amongusrickroll68/MeloMind") class TextToMusicGenerator: def __init__(self): self.model = tf.keras.models.load_model('path/to/model') self.sampling_rate = 22050 def generate_music(self, prompt): prompt_encoded = self._encode_prompt(prompt) sequence = self._generate_sequence(prompt_encoded) audio = self._sequence_to_audio(sequence) return audio def _encode_prompt(self, prompt): # encode text prompt as input for the model # ... return prompt_encoded def _generate_sequence(self, prompt_encoded): # generate sequence of musical notes from encoded prompt # ... return sequence def _sequence_to_audio(self, sequence): # convert sequence to audio waveform notes = self._sequence_to_notes(sequence) audio = self._notes_to_audio(notes) return audio def _sequence_to_notes(self, sequence): # convert sequence of musical notes to Note objects # ... return notes def _notes_to_audio(self, notes): # convert Note objects to audio waveform # ... return audio generator = TextToMusicGenerator() prompt = "Generate a cheerful and upbeat song in the key of C major with a tempo of 120 bpm" audio = generator.generate_music(prompt) librosa.output.write_wav('generated_music.wav', audio, sr=generator.sampling_rate)