Spaces:
Runtime error
Runtime error
Amir Zait
commited on
Commit
β’
e8b13db
1
Parent(s):
d5d060c
fixes
Browse files- app.py +7 -30
- image_generator.py +3 -5
- requirements.txt +0 -2
app.py
CHANGED
@@ -3,7 +3,6 @@ from transformers import pipeline
|
|
3 |
|
4 |
import soundfile as sf
|
5 |
import gradio as gr
|
6 |
-
import librosa
|
7 |
import torch
|
8 |
import sox
|
9 |
import os
|
@@ -18,32 +17,6 @@ asr_model = AutoModelForCTC.from_pretrained("imvladikon/wav2vec2-xls-r-300m-hebr
|
|
18 |
|
19 |
he_en_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-he-en")
|
20 |
|
21 |
-
def process_audio_file(file):
|
22 |
-
data, sr = librosa.load(file)
|
23 |
-
if sr != 16000:
|
24 |
-
data = librosa.resample(data, sr, 16000)
|
25 |
-
|
26 |
-
input_values = asr_processor(data, sampling_rate=16_000, return_tensors="pt").input_values #.to(device)
|
27 |
-
return input_values
|
28 |
-
|
29 |
-
def transcribe(file_mic, file_upload):
|
30 |
-
warn_output = ""
|
31 |
-
if (file_mic is not None) and (file_upload is not None):
|
32 |
-
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
33 |
-
file = file_mic
|
34 |
-
elif (file_mic is None) and (file_upload is None):
|
35 |
-
return "ERROR: You have to either use the microphone or upload an audio file"
|
36 |
-
elif file_mic is not None:
|
37 |
-
file = file_mic
|
38 |
-
else:
|
39 |
-
file = file_upload
|
40 |
-
|
41 |
-
input_values = process_audio_file(file)
|
42 |
-
logits = asr_model(input_values).logits
|
43 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
44 |
-
transcription = asr_processor.decode(predicted_ids[0], skip_special_tokens=True)
|
45 |
-
return warn_output + transcription
|
46 |
-
|
47 |
def convert(inputfile, outfile):
|
48 |
sox_tfm = sox.Transformer()
|
49 |
sox_tfm.set_output_format(
|
@@ -52,22 +25,26 @@ def convert(inputfile, outfile):
|
|
52 |
sox_tfm.build(inputfile, outfile)
|
53 |
|
54 |
def parse_transcription(wav_file):
|
|
|
55 |
filename = wav_file.name.split('.')[0]
|
56 |
convert(wav_file.name, filename + "16k.wav")
|
57 |
speech, _ = sf.read(filename + "16k.wav")
|
58 |
-
|
|
|
59 |
input_values = asr_processor(speech, sampling_rate=16_000, return_tensors="pt").input_values
|
60 |
logits = asr_model(input_values).logits
|
61 |
predicted_ids = torch.argmax(logits, dim=-1)
|
62 |
transcription = asr_processor.decode(predicted_ids[0], skip_special_tokens=True)
|
63 |
-
translated = he_en_translator(transcription)[0]['translation_text']
|
64 |
|
|
|
|
|
|
|
|
|
65 |
image = generate_image(translated)
|
66 |
return image
|
67 |
|
68 |
output = gr.outputs.Image(label='')
|
69 |
input_mic = gr.inputs.Audio(source="microphone", type="file", optional=True)
|
70 |
-
input_upload = gr.inputs.Audio(source="upload", type="file", optional=True)
|
71 |
|
72 |
gr.Interface(parse_transcription, inputs=[input_mic], outputs=output,
|
73 |
analytics_enabled=False,
|
|
|
3 |
|
4 |
import soundfile as sf
|
5 |
import gradio as gr
|
|
|
6 |
import torch
|
7 |
import sox
|
8 |
import os
|
|
|
17 |
|
18 |
he_en_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-he-en")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def convert(inputfile, outfile):
|
21 |
sox_tfm = sox.Transformer()
|
22 |
sox_tfm.set_output_format(
|
|
|
25 |
sox_tfm.build(inputfile, outfile)
|
26 |
|
27 |
def parse_transcription(wav_file):
|
28 |
+
# Get the wav file from the microphone
|
29 |
filename = wav_file.name.split('.')[0]
|
30 |
convert(wav_file.name, filename + "16k.wav")
|
31 |
speech, _ = sf.read(filename + "16k.wav")
|
32 |
+
|
33 |
+
# transcribe to hebrew
|
34 |
input_values = asr_processor(speech, sampling_rate=16_000, return_tensors="pt").input_values
|
35 |
logits = asr_model(input_values).logits
|
36 |
predicted_ids = torch.argmax(logits, dim=-1)
|
37 |
transcription = asr_processor.decode(predicted_ids[0], skip_special_tokens=True)
|
|
|
38 |
|
39 |
+
# translate to english
|
40 |
+
translated = he_en_translator(transcription)[0]['translation_text']
|
41 |
+
|
42 |
+
# generate image
|
43 |
image = generate_image(translated)
|
44 |
return image
|
45 |
|
46 |
output = gr.outputs.Image(label='')
|
47 |
input_mic = gr.inputs.Audio(source="microphone", type="file", optional=True)
|
|
|
48 |
|
49 |
gr.Interface(parse_transcription, inputs=[input_mic], outputs=output,
|
50 |
analytics_enabled=False,
|
image_generator.py
CHANGED
@@ -7,13 +7,11 @@ from dalle_mini import DalleBart, DalleBartProcessor
|
|
7 |
from vqgan_jax.modeling_flax_vqgan import VQModel
|
8 |
|
9 |
# Model references
|
10 |
-
# dalle-mega
|
11 |
-
DALLE_MODEL = "dalle-mini/dalle-mini/mega-1-fp16:latest" # can be wandb artifact or π€ Hub or local folder or google bucket
|
|
|
12 |
DALLE_COMMIT_ID = None
|
13 |
|
14 |
-
# if the notebook crashes too often you can use dalle-mini instead by uncommenting below line
|
15 |
-
# DALLE_MODEL = "dalle-mini/dalle-mini/mini-1:v0"
|
16 |
-
|
17 |
# VQGAN model
|
18 |
VQGAN_REPO = "dalle-mini/vqgan_imagenet_f16_16384"
|
19 |
VQGAN_COMMIT_ID = "e93a26e7707683d349bf5d5c41c5b0ef69b677a9"
|
|
|
7 |
from vqgan_jax.modeling_flax_vqgan import VQModel
|
8 |
|
9 |
# Model references
|
10 |
+
# dalle-mini, mega too large
|
11 |
+
# DALLE_MODEL = "dalle-mini/dalle-mini/mega-1-fp16:latest" # can be wandb artifact or π€ Hub or local folder or google bucket
|
12 |
+
DALLE_MODEL = "dalle-mini/dalle-mini/mini-1:v0"
|
13 |
DALLE_COMMIT_ID = None
|
14 |
|
|
|
|
|
|
|
15 |
# VQGAN model
|
16 |
VQGAN_REPO = "dalle-mini/vqgan_imagenet_f16_16384"
|
17 |
VQGAN_COMMIT_ID = "e93a26e7707683d349bf5d5c41c5b0ef69b677a9"
|
requirements.txt
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
gradio
|
2 |
-
librosa
|
3 |
soundfile
|
4 |
torch
|
5 |
transformers
|
6 |
sox
|
7 |
-
sentencepiece
|
8 |
dalle-mini
|
9 |
Pillow
|
10 |
numpy
|
|
|
1 |
gradio
|
|
|
2 |
soundfile
|
3 |
torch
|
4 |
transformers
|
5 |
sox
|
|
|
6 |
dalle-mini
|
7 |
Pillow
|
8 |
numpy
|