Spaces:
Sleeping
Sleeping
amirhoseinsedaghati
commited on
Commit
•
8f53255
1
Parent(s):
7155372
add tools
Browse files- tools/chatbot.py +71 -0
- tools/summarizer.py +39 -0
tools/chatbot.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
2 |
+
import streamlit as st
|
3 |
+
from tools.summarizer import Summarizer
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import os
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
class QuestionAnswering(object):
|
12 |
+
def __init__(self, model_name, memory) -> None:
|
13 |
+
self.model_name = model_name
|
14 |
+
self.memory = memory
|
15 |
+
self.llm = ChatNVIDIA(
|
16 |
+
model=self.model_name,
|
17 |
+
api_key=os.getenv('NV_API_KEY'),
|
18 |
+
max_tokens=700,
|
19 |
+
temperature=0.01,
|
20 |
+
top_p=.7
|
21 |
+
)
|
22 |
+
self.summarizer = Summarizer()
|
23 |
+
|
24 |
+
|
25 |
+
def generate_answer(self, question:str):
|
26 |
+
if self.model_name in ['google/gemma-2-27b-it', 'microsoft/phi-3-medium-128k-instruct']:
|
27 |
+
prompt = [
|
28 |
+
{
|
29 |
+
'role' : "assistant",
|
30 |
+
'content' : "You are a helpful and native chatbot who can guide clients to write and talk naturally\
|
31 |
+
and reduce their mistakes in the different aspects of their English skills. And please\
|
32 |
+
guide users in short and concise answers."
|
33 |
+
},
|
34 |
+
]
|
35 |
+
|
36 |
+
else:
|
37 |
+
prompt = [
|
38 |
+
{
|
39 |
+
'role' : "system",
|
40 |
+
'content' : "You are a helpful and native chatbot who can guide clients to write and talk naturally\
|
41 |
+
and reduce their mistakes in the different aspects of their English skills. And please\
|
42 |
+
guide users in short and concise answers."
|
43 |
+
},
|
44 |
+
]
|
45 |
+
|
46 |
+
with st.expander('Question'):
|
47 |
+
st.write('User: ', question)
|
48 |
+
|
49 |
+
if len(self.memory) != 0:
|
50 |
+
# Save the last 2 conversations
|
51 |
+
short_term_memory = self.memory[-4:]
|
52 |
+
try:
|
53 |
+
summarized_short_term_memory = self.summarizer.summarize(short_term_memory)
|
54 |
+
except:
|
55 |
+
st.warning(body="Refresh the page or Try it again later.", icon="🤖")
|
56 |
+
else:
|
57 |
+
prompt.extend(summarized_short_term_memory)
|
58 |
+
|
59 |
+
user_dict = {'role' : 'user', 'content' : question}
|
60 |
+
self.memory.append(user_dict)
|
61 |
+
prompt.append(user_dict)
|
62 |
+
|
63 |
+
res = self.llm.invoke(prompt)
|
64 |
+
|
65 |
+
assistant_dict = {'role' : res.response_metadata['role'], 'content' : res.content}
|
66 |
+
self.memory.append(assistant_dict)
|
67 |
+
|
68 |
+
with st.expander('Answer'):
|
69 |
+
st.write("Assistant: ", assistant_dict['content'])
|
70 |
+
|
71 |
+
|
tools/summarizer.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
2 |
+
from langchain_core.prompts import PromptTemplate
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import os
|
5 |
+
|
6 |
+
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
template = """
|
10 |
+
You are a helpful Summarizer Chatbot who can just summarize the input text and return.
|
11 |
+
|
12 |
+
User : {input_text}
|
13 |
+
|
14 |
+
AI : """
|
15 |
+
|
16 |
+
prompt = PromptTemplate.from_template(template)
|
17 |
+
|
18 |
+
class Summarizer(object):
|
19 |
+
def __init__(self) -> None:
|
20 |
+
self.llm = ChatNVIDIA(
|
21 |
+
model='google/gemma-2-2b-it',
|
22 |
+
api_key=os.getenv('NV_API_KEY'),
|
23 |
+
max_tokens=128,
|
24 |
+
temperature=0.01,
|
25 |
+
top_p=.7
|
26 |
+
)
|
27 |
+
self.chain = prompt | self.llm
|
28 |
+
|
29 |
+
|
30 |
+
def summarize(self, mem:list):
|
31 |
+
summarized_memory = []
|
32 |
+
for item in mem:
|
33 |
+
if item['role'].lower() == 'user':
|
34 |
+
summarized_memory.append(item)
|
35 |
+
else:
|
36 |
+
summarized_content = self.chain.invoke(item['content']).content
|
37 |
+
summarized_memory.append({'role' : item['role'], 'content' : summarized_content})
|
38 |
+
|
39 |
+
return summarized_memory
|