import gradio as gr from llama_cpp import Llama import os llm = Llama.from_pretrained( repo_id="amir22010/fine_tuned_product_marketing_email_gemma_2_9b_q4_k_m", filename="unsloth.Q4_K_M.gguf", cache_dir=os.path.abspath(os.getcwd()), verbose=False ) #marketing prompt marketing_email_prompt = """Below is a product and description, please write a marketing email for this product. ### Product: {} ### Description: {} ### Marketing Email: {}""" def greet(product,description): output = llm.create_chat_completion( messages=[ { "role": "system", "content": "Your go-to Email Marketing Guru - I'm here to help you craft compelling campaigns, boost conversions, and take your business to the next level.", }, {"role": "user", "content": marketing_email_prompt.format( product, # product description, # description "", # output - leave this blank for generation! )}, ], # response_format={ # "type": "json_object", # }, max_tokens=8192, temperature=0.7, stream=True ) partial_message = "" for chunk in output: delta = chunk['choices'][0]['delta'] if 'content' in delta: partial_message = partial_message + delta.get('content', '') yield partial_message demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text") demo.launch()