Spaces:
Runtime error
Runtime error
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers import ( | |
CLIPTextModel, | |
CLIPTokenizer, | |
T5EncoderModel, | |
T5TokenizerFast, | |
) | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import FluxLoraLoaderMixin | |
from diffusers.models.autoencoders import AutoencoderKL | |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
is_torch_xla_available, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
from transformer_flux import FluxTransformer2DModel | |
from controlnet_flux import FluxControlNetModel | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers.utils import load_image | |
>>> from diffusers import FluxControlNetPipeline | |
>>> from diffusers import FluxControlNetModel | |
>>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny-alpha" | |
>>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
>>> pipe = FluxControlNetPipeline.from_pretrained( | |
... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16 | |
... ) | |
>>> pipe.to("cuda") | |
>>> control_image = load_image("https://huggingface.co./InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") | |
>>> control_mask = load_image("https://huggingface.co./InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") | |
>>> prompt = "A girl in city, 25 years old, cool, futuristic" | |
>>> image = pipe( | |
... prompt, | |
... control_image=control_image, | |
... controlnet_conditioning_scale=0.6, | |
... num_inference_steps=28, | |
... guidance_scale=3.5, | |
... ).images[0] | |
>>> image.save("flux.png") | |
``` | |
""" | |
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift | |
def calculate_shift( | |
image_seq_len, | |
base_seq_len: int = 256, | |
max_seq_len: int = 4096, | |
base_shift: float = 0.5, | |
max_shift: float = 1.16, | |
): | |
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
b = base_shift - m * base_seq_len | |
mu = image_seq_len * m + b | |
return mu | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError( | |
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
) | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class FluxControlNetInpaintingPipeline(DiffusionPipeline, FluxLoraLoaderMixin): | |
r""" | |
The Flux pipeline for text-to-image generation. | |
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
Args: | |
transformer ([`FluxTransformer2DModel`]): | |
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
[CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14) variant. | |
text_encoder_2 ([`T5EncoderModel`]): | |
[T5](https://huggingface.co./docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
the [google/t5-v1_1-xxl](https://huggingface.co./google/t5-v1_1-xxl) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co./docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
tokenizer_2 (`T5TokenizerFast`): | |
Second Tokenizer of class | |
[T5TokenizerFast](https://huggingface.co./docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
""" | |
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
_optional_components = [] | |
_callback_tensor_inputs = ["latents", "prompt_embeds"] | |
def __init__( | |
self, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
text_encoder_2: T5EncoderModel, | |
tokenizer_2: T5TokenizerFast, | |
transformer: FluxTransformer2DModel, | |
controlnet: FluxControlNetModel, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
transformer=transformer, | |
scheduler=scheduler, | |
controlnet=controlnet, | |
) | |
self.vae_scale_factor = ( | |
2 ** (len(self.vae.config.block_out_channels)) | |
if hasattr(self, "vae") and self.vae is not None | |
else 16 | |
) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True) | |
self.mask_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, | |
do_resize=True, | |
do_convert_grayscale=True, | |
do_normalize=False, | |
do_binarize=True, | |
) | |
self.tokenizer_max_length = ( | |
self.tokenizer.model_max_length | |
if hasattr(self, "tokenizer") and self.tokenizer is not None | |
else 77 | |
) | |
self.default_sample_size = 64 | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def _get_t5_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]] = None, | |
num_images_per_prompt: int = 1, | |
max_sequence_length: int = 512, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
): | |
device = device or self._execution_device | |
dtype = dtype or self.text_encoder.dtype | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
text_inputs = self.tokenizer_2( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
return_length=False, | |
return_overflowing_tokens=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer_2( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer_2.batch_decode( | |
untruncated_ids[:, self.tokenizer_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because `max_sequence_length` is set to " | |
f" {max_sequence_length} tokens: {removed_text}" | |
) | |
prompt_embeds = self.text_encoder_2( | |
text_input_ids.to(device), output_hidden_states=False | |
)[0] | |
dtype = self.text_encoder_2.dtype | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
_, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
return prompt_embeds | |
def _get_clip_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]], | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
): | |
device = device or self._execution_device | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer_max_length, | |
truncation=True, | |
return_overflowing_tokens=False, | |
return_length=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer_max_length} tokens: {removed_text}" | |
) | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), output_hidden_states=False | |
) | |
# Use pooled output of CLIPTextModel | |
prompt_embeds = prompt_embeds.pooler_output | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
return prompt_embeds | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
prompt_2: Union[str, List[str]], | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
max_sequence_length: int = 512, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in all text-encoders | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier-free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
negative prompt to be encoded | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
negative prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is | |
used in all text-encoders | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
device = device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if self.text_encoder is not None and USE_PEFT_BACKEND: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
scale_lora_layers(self.text_encoder_2, lora_scale) | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
if prompt is not None: | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
prompt_2 = prompt_2 or prompt | |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
# We only use the pooled prompt output from the CLIPTextModel | |
pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
) | |
prompt_embeds = self._get_t5_prompt_embeds( | |
prompt=prompt_2, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
if do_classifier_free_guidance: | |
# 处理 negative prompt | |
negative_prompt = negative_prompt or "" | |
negative_prompt_2 = negative_prompt_2 or negative_prompt | |
negative_pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
negative_prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
) | |
negative_prompt_embeds = self._get_t5_prompt_embeds( | |
negative_prompt_2, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
else: | |
negative_pooled_prompt_embeds = None | |
negative_prompt_embeds = None | |
if self.text_encoder is not None: | |
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
if self.text_encoder_2 is not None: | |
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder_2, lora_scale) | |
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to( | |
device=device, dtype=self.text_encoder.dtype | |
) | |
return prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds,text_ids | |
def check_inputs( | |
self, | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
max_sequence_length=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError( | |
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs | |
for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt_2 is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and ( | |
not isinstance(prompt, str) and not isinstance(prompt, list) | |
): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
elif prompt_2 is not None and ( | |
not isinstance(prompt_2, str) and not isinstance(prompt_2, list) | |
): | |
raise ValueError( | |
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" | |
) | |
if prompt_embeds is not None and pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
) | |
if max_sequence_length is not None and max_sequence_length > 512: | |
raise ValueError( | |
f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}" | |
) | |
# Copied from diffusers.pipelines.flux.pipeline_flux._prepare_latent_image_ids | |
def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
latent_image_ids[..., 1] = ( | |
latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
) | |
latent_image_ids[..., 2] = ( | |
latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
) | |
( | |
latent_image_id_height, | |
latent_image_id_width, | |
latent_image_id_channels, | |
) = latent_image_ids.shape | |
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
latent_image_ids = latent_image_ids.reshape( | |
batch_size, | |
latent_image_id_height * latent_image_id_width, | |
latent_image_id_channels, | |
) | |
return latent_image_ids.to(device=device, dtype=dtype) | |
# Copied from diffusers.pipelines.flux.pipeline_flux._pack_latents | |
def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
latents = latents.view( | |
batch_size, num_channels_latents, height // 2, 2, width // 2, 2 | |
) | |
latents = latents.permute(0, 2, 4, 1, 3, 5) | |
latents = latents.reshape( | |
batch_size, (height // 2) * (width // 2), num_channels_latents * 4 | |
) | |
return latents | |
# Copied from diffusers.pipelines.flux.pipeline_flux._unpack_latents | |
def _unpack_latents(latents, height, width, vae_scale_factor): | |
batch_size, num_patches, channels = latents.shape | |
height = height // vae_scale_factor | |
width = width // vae_scale_factor | |
latents = latents.view(batch_size, height, width, channels // 4, 2, 2) | |
latents = latents.permute(0, 3, 1, 4, 2, 5) | |
latents = latents.reshape( | |
batch_size, channels // (2 * 2), height * 2, width * 2 | |
) | |
return latents | |
# Copied from diffusers.pipelines.flux.pipeline_flux.prepare_latents | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
height = 2 * (int(height) // self.vae_scale_factor) | |
width = 2 * (int(width) // self.vae_scale_factor) | |
shape = (batch_size, num_channels_latents, height, width) | |
if latents is not None: | |
latent_image_ids = self._prepare_latent_image_ids( | |
batch_size, height, width, device, dtype | |
) | |
return latents.to(device=device, dtype=dtype), latent_image_ids | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
latents = self._pack_latents( | |
latents, batch_size, num_channels_latents, height, width | |
) | |
latent_image_ids = self._prepare_latent_image_ids( | |
batch_size, height, width, device, dtype | |
) | |
return latents, latent_image_ids | |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image | |
def prepare_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
): | |
if isinstance(image, torch.Tensor): | |
pass | |
else: | |
image = self.image_processor.preprocess(image, height=height, width=width) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
return image | |
def prepare_image_with_mask( | |
self, | |
image, | |
mask, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance = False, | |
): | |
# Prepare image | |
if isinstance(image, torch.Tensor): | |
pass | |
else: | |
image = self.image_processor.preprocess(image, height=height, width=width) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
# Prepare mask | |
if isinstance(mask, torch.Tensor): | |
pass | |
else: | |
mask = self.mask_processor.preprocess(mask, height=height, width=width) | |
mask = mask.repeat_interleave(repeat_by, dim=0) | |
mask = mask.to(device=device, dtype=dtype) | |
# Get masked image | |
masked_image = image.clone() | |
masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1 | |
# Encode to latents | |
image_latents = self.vae.encode(masked_image.to(self.vae.dtype)).latent_dist.sample() | |
image_latents = ( | |
image_latents - self.vae.config.shift_factor | |
) * self.vae.config.scaling_factor | |
image_latents = image_latents.to(dtype) | |
mask = torch.nn.functional.interpolate( | |
mask, size=(height // self.vae_scale_factor * 2, width // self.vae_scale_factor * 2) | |
) | |
mask = 1 - mask | |
control_image = torch.cat([image_latents, mask], dim=1) | |
# Pack cond latents | |
packed_control_image = self._pack_latents( | |
control_image, | |
batch_size * num_images_per_prompt, | |
control_image.shape[1], | |
control_image.shape[2], | |
control_image.shape[3], | |
) | |
if do_classifier_free_guidance: | |
packed_control_image = torch.cat([packed_control_image] * 2) | |
return packed_control_image, height, width | |
def guidance_scale(self): | |
return self._guidance_scale | |
def joint_attention_kwargs(self): | |
return self._joint_attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
def interrupt(self): | |
return self._interrupt | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 28, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.0, | |
true_guidance_scale: float = 3.5 , | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
control_image: PipelineImageInput = None, | |
control_mask: PipelineImageInput = None, | |
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
will be used instead | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
images. | |
""" | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = true_guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
dtype = self.transformer.dtype | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) | |
if self.joint_attention_kwargs is not None | |
else None | |
) | |
( | |
prompt_embeds, | |
pooled_prompt_embeds, | |
negative_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
text_ids | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
do_classifier_free_guidance = self.do_classifier_free_guidance, | |
negative_prompt = negative_prompt, | |
negative_prompt_2 = negative_prompt_2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
# 在 encode_prompt 之后 | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim = 0) | |
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim = 0) | |
text_ids = torch.cat([text_ids, text_ids], dim = 0) | |
# 3. Prepare control image | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
if isinstance(self.controlnet, FluxControlNetModel): | |
control_image, height, width = self.prepare_image_with_mask( | |
image=control_image, | |
mask=control_mask, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=dtype, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
) | |
# 4. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
latents, latent_image_ids = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if self.do_classifier_free_guidance: | |
latent_image_ids = torch.cat([latent_image_ids] * 2) | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
image_seq_len = latents.shape[1] | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.base_image_seq_len, | |
self.scheduler.config.max_image_seq_len, | |
self.scheduler.config.base_shift, | |
self.scheduler.config.max_shift, | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
sigmas, | |
mu=mu, | |
) | |
num_warmup_steps = max( | |
len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
) | |
self._num_timesteps = len(timesteps) | |
# 6. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype) | |
# handle guidance | |
if self.transformer.config.guidance_embeds: | |
guidance = torch.tensor([guidance_scale], device=device) | |
guidance = guidance.expand(latent_model_input.shape[0]) | |
else: | |
guidance = None | |
# controlnet | |
( | |
controlnet_block_samples, | |
controlnet_single_block_samples, | |
) = self.controlnet( | |
hidden_states=latent_model_input, | |
controlnet_cond=control_image, | |
conditioning_scale=controlnet_conditioning_scale, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
) | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
controlnet_block_samples=[ | |
sample.to(dtype=self.transformer.dtype) | |
for sample in controlnet_block_samples | |
], | |
controlnet_single_block_samples=[ | |
sample.to(dtype=self.transformer.dtype) | |
for sample in controlnet_single_block_samples | |
] if controlnet_single_block_samples is not None else controlnet_single_block_samples, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# 在生成循环中 | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + true_guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step( | |
noise_pred, t, latents, return_dict=False | |
)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = self._unpack_latents( | |
latents, height, width, self.vae_scale_factor | |
) | |
latents = ( | |
latents / self.vae.config.scaling_factor | |
) + self.vae.config.shift_factor | |
latents = latents.to(self.vae.dtype) | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return FluxPipelineOutput(images=image) | |