File size: 7,082 Bytes
7a11626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import sys
from pathlib import Path
import torch
import numpy as np
from omegaconf import OmegaConf
from einops import rearrange

from torch import autocast
from contextlib import nullcontext
from math import sqrt
from adapt import ScoreAdapter

import warnings
from transformers import logging
warnings.filterwarnings("ignore", category=DeprecationWarning)
logging.set_verbosity_error()


device = torch.device("cuda")


def curr_dir():
    return Path(__file__).resolve().parent


def add_import_path(dirname):
    sys.path.append(str(
        curr_dir() / str(dirname)
    ))


def load_model_from_config(config, ckpt, verbose=False):
    from ldm.util import instantiate_from_config
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.to(device)
    model.eval()
    return model


def load_sd1_model(ckpt_root):
    ckpt_fname = ckpt_root / "stable_diffusion" / "sd-v1-5.ckpt"
    cfg_fname = curr_dir() / "sd1" / "configs" / "v1-inference.yaml"
    H, W = 512, 512

    config = OmegaConf.load(str(cfg_fname))
    model = load_model_from_config(config, str(ckpt_fname))
    return model, H, W


def load_sd2_model(ckpt_root, v2_highres):
    if v2_highres:
        ckpt_fname = ckpt_root / "sd2" / "768-v-ema.ckpt"
        cfg_fname = curr_dir() / "sd2/configs/stable-diffusion/v2-inference-v.yaml"
        H, W = 768, 768
    else:
        ckpt_fname = ckpt_root / "sd2" / "512-base-ema.ckpt"
        cfg_fname = curr_dir() / "sd2/configs/stable-diffusion/v2-inference.yaml"
        H, W = 512, 512

    config = OmegaConf.load(f"{cfg_fname}")
    model = load_model_from_config(config, str(ckpt_fname))
    return model, H, W


def _sqrt(x):
    if isinstance(x, float):
        return sqrt(x)
    else:
        assert isinstance(x, torch.Tensor)
        return torch.sqrt(x)


class StableDiffusion(ScoreAdapter):
    def __init__(self, variant, v2_highres, prompt, scale, precision):
        if variant == "v1":
            add_import_path("sd1")
            self.model, H, W = load_sd1_model(self.checkpoint_root())
        elif variant == "v2":
            add_import_path("sd2")
            self.model, H, W = load_sd2_model(self.checkpoint_root(), v2_highres)
        else:
            raise ValueError(f"{variant}")

        ae_resolution_f = 8

        self._device = self.model._device

        self.prompt = prompt
        self.scale = scale
        self.precision = precision
        self.precision_scope = autocast if self.precision == "autocast" else nullcontext
        self._data_shape = (4, H // ae_resolution_f, W // ae_resolution_f)

        self.cond_func = self.model.get_learned_conditioning
        self.M = 1000
        noise_schedule = "linear"
        self.noise_schedule = noise_schedule
        self.us = self.linear_us(self.M)

    def data_shape(self):
        return self._data_shape

    @property
    def σ_max(self):
        return self.us[0]

    @property
    def σ_min(self):
        return self.us[-1]

    @torch.no_grad()
    def denoise(self, xs, σ, **model_kwargs):
        with self.precision_scope("cuda"):
            with self.model.ema_scope():
                N = xs.shape[0]
                c = model_kwargs.pop('c')
                uc = model_kwargs.pop('uc')
                cond_t, σ = self.time_cond_vec(N, σ)
                unscaled_xs = xs
                xs = xs / _sqrt(1 + σ**2)
                if uc is None or self.scale == 1.:
                    output = self.model.apply_model(xs, cond_t, c)
                else:
                    x_in = torch.cat([xs] * 2)
                    t_in = torch.cat([cond_t] * 2)
                    c_in = torch.cat([uc, c])
                    e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
                    output = e_t_uncond + self.scale * (e_t - e_t_uncond)

                if self.model.parameterization == "v":
                    output = self.model.predict_eps_from_z_and_v(xs, cond_t, output)
                else:
                    output = output

                Ds = unscaled_xs - σ * output
                return Ds

    def cond_info(self, batch_size):
        prompts = batch_size * [self.prompt]
        return self.prompts_emb(prompts)

    @torch.no_grad()
    def prompts_emb(self, prompts):
        assert isinstance(prompts, list)
        batch_size = len(prompts)
        with self.precision_scope("cuda"):
            with self.model.ema_scope():
                cond = {}
                c = self.cond_func(prompts)
                cond['c'] = c
                uc = None
                if self.scale != 1.0:
                    uc = self.cond_func(batch_size * [""])
                cond['uc'] = uc
                return cond

    def unet_is_cond(self):
        return True

    def use_cls_guidance(self):
        return False

    def snap_t_to_nearest_tick(self, t):
        j = np.abs(t - self.us).argmin()
        return self.us[j], j

    def time_cond_vec(self, N, σ):
        if isinstance(σ, float):
            σ, j = self.snap_t_to_nearest_tick(σ)  # σ might change due to snapping
            cond_t = (self.M - 1) - j
            cond_t = torch.tensor([cond_t] * N, device=self.device)
            return cond_t, σ
        else:
            assert isinstance(σ, torch.Tensor)
            σ = σ.reshape(-1).cpu().numpy()
            σs = []
            js = []
            for elem in σ:
                _σ, _j = self.snap_t_to_nearest_tick(elem)
                σs.append(_σ)
                js.append((self.M - 1) - _j)

            cond_t = torch.tensor(js, device=self.device)
            σs = torch.tensor(σs, device=self.device, dtype=torch.float32).reshape(-1, 1, 1, 1)
            return cond_t, σs

    @staticmethod
    def linear_us(M=1000):
        assert M == 1000
        β_start = 0.00085
        β_end = 0.0120
        βs = np.linspace(β_start**0.5, β_end**0.5, M, dtype=np.float64)**2
        αs = np.cumprod(1 - βs)
        us = np.sqrt((1 - αs) / αs)
        us = us[::-1]
        return us

    @torch.no_grad()
    def encode(self, xs):
        model = self.model
        with self.precision_scope("cuda"):
            with self.model.ema_scope():
                zs = model.get_first_stage_encoding(
                    model.encode_first_stage(xs)
                )
        return zs

    @torch.no_grad()
    def decode(self, xs):
        with self.precision_scope("cuda"):
            with self.model.ema_scope():
                xs = self.model.decode_first_stage(xs)
                return xs


def test():
    sd = StableDiffusion("v2", True, "haha", 10.0, "autocast")
    print(sd)


if __name__ == "__main__":
    test()