import gradio as gr from langchain.prompts import PromptTemplate from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_core.output_parsers import JsonOutputParser from langdetect import detect import time # Initialize the LLM and other components llm = HuggingFaceEndpoint( repo_id="mistralai/Mistral-7B-Instruct-v0.3", task="text-generation", max_new_tokens=4096, temperature=0.5, do_sample=False, ) llm_engine_hf = ChatHuggingFace(llm=llm) template_classify = ''' Please carefully read the following text. The text is written in {LANG} language: {TEXT} After reading it, I want you to extract topic informations from text in {LANG} language. ''' template_json = ''' Your task is to read the following text, convert it to json format using 'Answer' as key and return it. {RESPONSE} Your final response MUST contain only the response, no other text. Example: {{"Answer":["Sport", "Entertainment", "General", "Inflation", "Effects of Inflation"]]}} ''' json_output_parser = JsonOutputParser() # Define the classify_text function def classify_text(text): global llm start = time.time() lang = detect(text) language_map = {"tr": "turkish", "en": "english", "ar": "arabic", "es": "spanish", "it": "italian", } lang = language_map[lang] prompt_classify = PromptTemplate( template=template_classify, input_variables=["LANG", "TEXT"] ) formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang) classify = llm.invoke(formatted_prompt) prompt_json = PromptTemplate( template=template_json, input_variables=["RESPONSE"] ) formatted_prompt = template_json.format(RESPONSE=classify) response = llm.invoke(formatted_prompt) parsed_output = json_output_parser.parse(response) end = time.time() duration = end - start return parsed_output, duration #['Answer'] # Create the Gradio interface def gradio_app(text): classification, time_taken = classify_text(text) return classification, f"Time taken: {time_taken:.2f} seconds" def create_gradio_interface(): with gr.Blocks() as iface: text_input = gr.Textbox(label="Text") output_text = gr.Textbox(label="Topics") time_taken = gr.Textbox(label="Time Taken (seconds)") submit_btn = gr.Button("Classify") submit_btn.click(fn=classify_text, inputs=text_input, outputs=[output_text, time_taken]) iface.launch() if __name__ == "__main__": create_gradio_interface()