Spaces:
Sleeping
Sleeping
Update app.py
Browse filesçalışmayan kodları sildim, artık detected language de ekrana yazılıyor, json'dan Answeri de daha güzel şekilde ekrana yazıyor
app.py
CHANGED
@@ -35,19 +35,6 @@ Example:
|
|
35 |
{{"Answer":["General"]}}
|
36 |
'''
|
37 |
|
38 |
-
"""
|
39 |
-
template_json = '''
|
40 |
-
Your task is to read the following text, convert it to json format using 'Answer' as key and return it.
|
41 |
-
<text>
|
42 |
-
{RESPONSE}
|
43 |
-
</text>
|
44 |
-
|
45 |
-
Your final response MUST contain only the response, no other text.
|
46 |
-
Example:
|
47 |
-
{{"Answer":["General"]}}
|
48 |
-
'''
|
49 |
-
"""
|
50 |
-
|
51 |
json_output_parser = JsonOutputParser()
|
52 |
|
53 |
# Define the classify_text function
|
@@ -55,16 +42,9 @@ def classify_text(text):
|
|
55 |
global llm
|
56 |
|
57 |
start = time.time()
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
"en": "english",
|
62 |
-
"ar": "arabic",
|
63 |
-
"es": "spanish",
|
64 |
-
"it": "italian",
|
65 |
-
}
|
66 |
-
try:
|
67 |
-
lang = language_map[lang]
|
68 |
except:
|
69 |
lang = "en"
|
70 |
|
@@ -75,36 +55,27 @@ def classify_text(text):
|
|
75 |
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang)
|
76 |
classify = llm.invoke(formatted_prompt)
|
77 |
|
78 |
-
'''
|
79 |
-
prompt_json = PromptTemplate(
|
80 |
-
template=template_json,
|
81 |
-
input_variables=["RESPONSE"]
|
82 |
-
)
|
83 |
-
'''
|
84 |
-
|
85 |
-
#formatted_prompt = template_json.format(RESPONSE=classify)
|
86 |
-
#response = llm.invoke(formatted_prompt)
|
87 |
-
|
88 |
parsed_output = json_output_parser.parse(classify)
|
89 |
end = time.time()
|
90 |
duration = end - start
|
91 |
-
return parsed_output, duration #['Answer']
|
92 |
|
93 |
# Create the Gradio interface
|
94 |
-
def gradio_app(text):
|
95 |
-
classification, time_taken = classify_text(text)
|
96 |
-
return classification, f"Time taken: {time_taken:.2f} seconds"
|
97 |
-
|
98 |
def create_gradio_interface():
|
99 |
with gr.Blocks() as iface:
|
100 |
text_input = gr.Textbox(label="Text")
|
|
|
101 |
output_text = gr.Textbox(label="Detected Topics")
|
102 |
time_taken = gr.Textbox(label="Time Taken (seconds)")
|
103 |
submit_btn = gr.Button("Detect topic")
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
|
107 |
iface.launch()
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
-
create_gradio_interface()
|
|
|
35 |
{{"Answer":["General"]}}
|
36 |
'''
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
json_output_parser = JsonOutputParser()
|
39 |
|
40 |
# Define the classify_text function
|
|
|
42 |
global llm
|
43 |
|
44 |
start = time.time()
|
45 |
+
try:
|
46 |
+
lang = detect(text)
|
47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
except:
|
49 |
lang = "en"
|
50 |
|
|
|
55 |
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang)
|
56 |
classify = llm.invoke(formatted_prompt)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
parsed_output = json_output_parser.parse(classify)
|
59 |
end = time.time()
|
60 |
duration = end - start
|
61 |
+
return lang, parsed_output["Answer"][0], duration #['Answer']
|
62 |
|
63 |
# Create the Gradio interface
|
|
|
|
|
|
|
|
|
64 |
def create_gradio_interface():
|
65 |
with gr.Blocks() as iface:
|
66 |
text_input = gr.Textbox(label="Text")
|
67 |
+
lang_output = gr.Textbox(label="Detected Language")
|
68 |
output_text = gr.Textbox(label="Detected Topics")
|
69 |
time_taken = gr.Textbox(label="Time Taken (seconds)")
|
70 |
submit_btn = gr.Button("Detect topic")
|
71 |
|
72 |
+
def on_submit(text):
|
73 |
+
lang, classification, duration = classify_text(text)
|
74 |
+
return lang, classification, f"Time taken: {duration:.2f} seconds"
|
75 |
+
|
76 |
+
submit_btn.click(fn=on_submit, inputs=text_input, outputs=[lang_output, output_text, time_taken])
|
77 |
|
78 |
iface.launch()
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
+
create_gradio_interface()
|