Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.prompts import PromptTemplate | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.output_parsers import JsonOutputParser | |
from langdetect import detect | |
import time | |
# Initialize the LLM and other components | |
llm = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
task="text-generation", | |
max_new_tokens=128, | |
temperature=0.7, | |
do_sample=False, | |
) | |
template_classify = ''' | |
You are a topic detector bot. Your task is to determine the main topic of given text phrase. | |
Answer general main topic not specific words. | |
Your answer does not contain specific information from given text. | |
Answer just one general main topic. Do not answer two or more topic. | |
Answer shortly with two or three word phrase. Do not answer with long sentence. | |
If you do not know the topic just answer as General. | |
What is the main topic of given text?: | |
<text> | |
{TEXT} | |
</text> | |
convert it to json format using 'Answer' as key and return it. | |
Your final response MUST contain only the response, no other text. | |
Example: | |
{{"Answer":["General"]}} | |
''' | |
""" | |
template_json = ''' | |
Your task is to read the following text, convert it to json format using 'Answer' as key and return it. | |
<text> | |
{RESPONSE} | |
</text> | |
Your final response MUST contain only the response, no other text. | |
Example: | |
{{"Answer":["General"]}} | |
''' | |
""" | |
json_output_parser = JsonOutputParser() | |
# Define the classify_text function | |
def classify_text(text): | |
global llm | |
start = time.time() | |
lang = detect(text) | |
language_map = {"tr": "turkish", | |
"en": "english", | |
"ar": "arabic", | |
"es": "spanish", | |
"it": "italian", | |
} | |
try: | |
lang = language_map[lang] | |
except: | |
lang = "en" | |
prompt_classify = PromptTemplate( | |
template=template_classify, | |
input_variables=["LANG", "TEXT"] | |
) | |
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang) | |
classify = llm.invoke(formatted_prompt) | |
''' | |
prompt_json = PromptTemplate( | |
template=template_json, | |
input_variables=["RESPONSE"] | |
) | |
''' | |
#formatted_prompt = template_json.format(RESPONSE=classify) | |
#response = llm.invoke(formatted_prompt) | |
parsed_output = json_output_parser.parse(classify) | |
end = time.time() | |
duration = end - start | |
return parsed_output, duration #['Answer'] | |
# Create the Gradio interface | |
def gradio_app(text): | |
classification, time_taken = classify_text(text) | |
return classification, f"Time taken: {time_taken:.2f} seconds" | |
def create_gradio_interface(): | |
with gr.Blocks() as iface: | |
text_input = gr.Textbox(label="Text") | |
output_text = gr.Textbox(label="Detected Topics") | |
time_taken = gr.Textbox(label="Time Taken (seconds)") | |
submit_btn = gr.Button("Detect topic") | |
submit_btn.click(fn=classify_text, inputs=text_input, outputs=[output_text, time_taken]) | |
iface.launch() | |
if __name__ == "__main__": | |
create_gradio_interface() | |