alpcansoydas
commited on
Commit
•
a08048c
1
Parent(s):
2014812
Update app.py
Browse files
app.py
CHANGED
@@ -10,20 +10,20 @@ llm = HuggingFaceEndpoint(
|
|
10 |
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
11 |
task="text-generation",
|
12 |
max_new_tokens=128,
|
13 |
-
temperature=0.
|
14 |
do_sample=False,
|
15 |
)
|
16 |
|
17 |
template_classify = '''
|
18 |
-
You are
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
Answer shortly with two or three word phrase. Do not answer with long sentence.
|
24 |
-
If you do not know the topic just answer as General.
|
25 |
|
26 |
-
|
27 |
|
28 |
<text>
|
29 |
{TEXT}
|
@@ -32,47 +32,26 @@ What is the main topic of given text?:
|
|
32 |
convert it to json format using 'Answer' as key and return it.
|
33 |
Your final response MUST contain only the response, no other text.
|
34 |
Example:
|
35 |
-
{{"Answer":["
|
36 |
'''
|
37 |
|
38 |
-
"""
|
39 |
-
template_json = '''
|
40 |
-
Your task is to read the following text, convert it to json format using 'Answer' as key and return it.
|
41 |
-
<text>
|
42 |
-
{RESPONSE}
|
43 |
-
</text>
|
44 |
-
|
45 |
-
Your final response MUST contain only the response, no other text.
|
46 |
-
Example:
|
47 |
-
{{"Answer":["General"]}}
|
48 |
-
'''
|
49 |
-
"""
|
50 |
-
|
51 |
json_output_parser = JsonOutputParser()
|
52 |
|
53 |
# Define the classify_text function
|
54 |
-
def classify_text(text):
|
55 |
global llm
|
56 |
|
57 |
start = time.time()
|
58 |
-
lang = detect(text)
|
59 |
-
|
60 |
-
language_map = {"tr": "turkish",
|
61 |
-
"en": "english",
|
62 |
-
"ar": "arabic",
|
63 |
-
"es": "spanish",
|
64 |
-
"it": "italian",
|
65 |
-
}
|
66 |
-
try:
|
67 |
-
lang = language_map[lang]
|
68 |
-
except:
|
69 |
-
lang = "en"
|
70 |
|
71 |
prompt_classify = PromptTemplate(
|
72 |
template=template_classify,
|
73 |
-
input_variables=["
|
74 |
)
|
75 |
-
formatted_prompt = prompt_classify.format(TEXT=text,
|
|
|
|
|
|
|
|
|
76 |
classify = llm.invoke(formatted_prompt)
|
77 |
|
78 |
'''
|
@@ -97,12 +76,15 @@ def gradio_app(text):
|
|
97 |
|
98 |
def create_gradio_interface():
|
99 |
with gr.Blocks() as iface:
|
|
|
|
|
|
|
100 |
text_input = gr.Textbox(label="Text")
|
101 |
-
output_text = gr.Textbox(label="
|
102 |
time_taken = gr.Textbox(label="Time Taken (seconds)")
|
103 |
-
submit_btn = gr.Button("Detect
|
104 |
|
105 |
-
submit_btn.click(fn=classify_text, inputs=text_input, outputs=[output_text, time_taken])
|
106 |
|
107 |
iface.launch()
|
108 |
|
|
|
10 |
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
11 |
task="text-generation",
|
12 |
max_new_tokens=128,
|
13 |
+
temperature=0.5,
|
14 |
do_sample=False,
|
15 |
)
|
16 |
|
17 |
template_classify = '''
|
18 |
+
You are an irrelevant content detector bot.
|
19 |
+
In social media, there are lots of bot accounts and they produce irrelevant contents on company hashtags.
|
20 |
+
You will detect it as Relevant or Irrelevant.
|
21 |
|
22 |
+
Company name: {COMPANY_NAME}
|
23 |
+
Company sector: {COMPANY_SECTOR}
|
24 |
+
About Company: {ABOUT_COMPANY}
|
|
|
|
|
25 |
|
26 |
+
Detect following text as RELEVANT OR IRRELEVANT:
|
27 |
|
28 |
<text>
|
29 |
{TEXT}
|
|
|
32 |
convert it to json format using 'Answer' as key and return it.
|
33 |
Your final response MUST contain only the response, no other text.
|
34 |
Example:
|
35 |
+
{{"Answer":["RELEVANT"]}}
|
36 |
'''
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
json_output_parser = JsonOutputParser()
|
39 |
|
40 |
# Define the classify_text function
|
41 |
+
def classify_text(text, company_name_input, company_sector_input, about_company_input):
|
42 |
global llm
|
43 |
|
44 |
start = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
prompt_classify = PromptTemplate(
|
47 |
template=template_classify,
|
48 |
+
input_variables=["TEXT", "COMPANY_NAME", "COMPANY_SECTOR", "ABOUT_COMPANY"]
|
49 |
)
|
50 |
+
formatted_prompt = prompt_classify.format(TEXT=text,
|
51 |
+
COMPANY_NAME=company_name_input
|
52 |
+
COMPANY_SECTOR=company_sector_input,
|
53 |
+
ABOUT_COMPANY=about_company_input
|
54 |
+
)
|
55 |
classify = llm.invoke(formatted_prompt)
|
56 |
|
57 |
'''
|
|
|
76 |
|
77 |
def create_gradio_interface():
|
78 |
with gr.Blocks() as iface:
|
79 |
+
company_name_input = gr.Textbox(label="Enter Company Name")
|
80 |
+
company_sector_input = gr.Textbox(label="Enter Company Sector")
|
81 |
+
about_company_input = gr.Textbox(label="Enter Information About Company")
|
82 |
text_input = gr.Textbox(label="Text")
|
83 |
+
output_text = gr.Textbox(label="Result")
|
84 |
time_taken = gr.Textbox(label="Time Taken (seconds)")
|
85 |
+
submit_btn = gr.Button("Detect")
|
86 |
|
87 |
+
submit_btn.click(fn=classify_text, inputs=[company_name_input, company_sector_input, about_company_input, text_input], outputs=[output_text, time_taken])
|
88 |
|
89 |
iface.launch()
|
90 |
|