|
import streamlit as st |
|
import numpy as np |
|
from PIL import Image |
|
from tensorflow.keras.models import load_model |
|
import joblib |
|
from tensorflow.keras.preprocessing.text import Tokenizer |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
from tensorflow.keras.applications.inception_v3 import preprocess_input |
|
from tensorflow.keras.datasets import imdb |
|
|
|
import cv2 |
|
from BackPropogation import BackPropogation |
|
from Perceptron import Perceptron |
|
from sklearn.linear_model import Perceptron |
|
import tensorflow as tf |
|
import joblib |
|
import pickle |
|
from numpy import argmax |
|
|
|
|
|
|
|
image_model = load_model('tumor_detection_model.h5') |
|
dnn_model = load_model('sms_spam_detection_dnnmodel.h5') |
|
rnn_model = load_model('spam_detection_rnn_model.h5') |
|
|
|
|
|
with open(r'Model_backprop.pkl', 'rb') as file: |
|
backprop_model = pickle.load(file) |
|
|
|
with open(r'Percep_model.pkl', 'rb') as file: |
|
perceptron_model = pickle.load(file) |
|
|
|
with open(r'tokeniser.pkl', 'rb') as file: |
|
loaded_tokeniser = pickle.load(file) |
|
|
|
lstm_model_path='Lstm_model.h5' |
|
|
|
|
|
st.title("Classification") |
|
|
|
|
|
task = st.sidebar.selectbox("Select Task", ["Tumor Detection ", "Sentiment Classification"]) |
|
tokeniser = tf.keras.preprocessing.text.Tokenizer() |
|
max_length=10 |
|
|
|
def predictdnn_spam(text): |
|
sequence = loaded_tokeniser.texts_to_sequences([text]) |
|
padded_sequence = pad_sequences(sequence, maxlen=10) |
|
prediction = dnn_model.predict(padded_sequence)[0][0] |
|
if prediction >= 0.5: |
|
return "not spam" |
|
else: |
|
return "spam" |
|
def preprocess_imdbtext(text, maxlen=200, num_words=10000): |
|
|
|
tokenizer = Tokenizer(num_words=num_words) |
|
tokenizer.fit_on_texts(text) |
|
|
|
|
|
sequences = tokenizer.texts_to_sequences(text) |
|
|
|
|
|
padded_sequences = pad_sequences(sequences, maxlen=maxlen) |
|
|
|
return padded_sequences, tokenizer |
|
|
|
def predict_sentiment_backprop(text, model): |
|
preprocessed_text = preprocess_imdbtext(text, 200) |
|
prediction = backprop_model.predict(preprocessed_text) |
|
return prediction |
|
|
|
def preprocess_imdb_lstm(user_input, tokenizer, max_review_length=500): |
|
|
|
user_input_sequence = tokenizer.texts_to_sequences([user_input]) |
|
user_input_padded = pad_sequences(user_input_sequence, maxlen=max_review_length) |
|
return user_input_padded |
|
|
|
def predict_sentiment_lstm(model, user_input, tokenizer): |
|
preprocessed_input = preprocess_imdb_lstm(user_input, tokenizer) |
|
prediction = model.predict(preprocessed_input) |
|
return prediction |
|
|
|
def predict_sentiment_precep(user_input, num_words=1000, max_len=200): |
|
word_index = imdb.get_word_index() |
|
input_sequence = [word_index[word] if word in word_index and word_index[word] < num_words else 0 for word in user_input.split()] |
|
padded_sequence = pad_sequences([input_sequence], maxlen=max_len) |
|
return padded_sequence |
|
|
|
|
|
|
|
def preprocess_message_dnn(message, tokeniser, max_length): |
|
|
|
encoded_message = tokeniser.texts_to_sequences([message]) |
|
padded_message = tf.keras.preprocessing.sequence.pad_sequences(encoded_message, maxlen=max_length, padding='post') |
|
return padded_message |
|
|
|
def predict_rnnspam(message, tokeniser, max_length): |
|
|
|
processed_message = preprocess_message_dnn(message, tokeniser, max_length) |
|
|
|
|
|
prediction = rnn_model.predict(processed_message) |
|
if prediction >= 0.5: |
|
return "Spam" |
|
else: |
|
return "Ham" |
|
|
|
|
|
|
|
def preprocess_image(image): |
|
image = image.resize((299, 299)) |
|
image_array = np.array(image) |
|
preprocessed_image = preprocess_input(image_array) |
|
|
|
return preprocessed_image |
|
|
|
def make_prediction_cnn(image, image_model): |
|
img = image.resize((128, 128)) |
|
img_array = np.array(img) |
|
img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2])) |
|
|
|
preprocessed_image = preprocess_input(img_array) |
|
prediction = image_model.predict(preprocessed_image) |
|
|
|
if prediction > 0.5: |
|
st.write("Tumor Detected") |
|
else: |
|
st.write("No Tumor") |
|
if task == "Sentiment Classification": |
|
st.subheader("Choose Model") |
|
model_choice = st.radio("Select Model", ["DNN", "RNN", "Perceptron", "Backpropagation","LSTM"]) |
|
|
|
st.subheader("Text Input") |
|
|
|
|
|
if model_choice=='DNN': |
|
text_input = st.text_area("Enter Text") |
|
if st.button("Predict"): |
|
if text_input: |
|
prediction_result = predictdnn_spam(text_input) |
|
st.write(f"The review's class is: {prediction_result}") |
|
else: |
|
st.write("Enter a movie review") |
|
|
|
elif model_choice == "RNN": |
|
text_input = st.text_area("Enter Text") |
|
if text_input: |
|
prediction_result = predict_rnnspam(text_input,loaded_tokeniser,max_length=10) |
|
if st.button("Predict"): |
|
st.write(f"The message is classified as: {prediction_result}") |
|
else: |
|
st.write("Please enter some text for prediction") |
|
elif model_choice == "Perceptron": |
|
text_input = st.text_area("Enter Text" ) |
|
if st.button('Predict'): |
|
processed_input = predict_sentiment_precep(text_input) |
|
prediction = perceptron_model.predict(processed_input)[0] |
|
sentiment = "Positive" if prediction == 1 else "Negative" |
|
st.write(f"Predicted Sentiment: {sentiment}") |
|
elif model_choice == "LSTM": |
|
|
|
lstm_model = tf.keras.models.load_model(lstm_model_path) |
|
text_input = st.text_area("Enter text for sentiment analysis:", "") |
|
if st.button("Predict"): |
|
tokenizer = Tokenizer(num_words=5000) |
|
prediction = predict_sentiment_lstm(lstm_model, text_input, tokenizer) |
|
|
|
if prediction[0][0]<0.5 : |
|
result="Negative" |
|
st.write(f"The message is classified as: {result}") |
|
else: |
|
result="Positive" |
|
st.write(f"The message is classified as: {result}") |
|
|
|
elif model_choice == "Backpropagation": |
|
text_input = st.text_area("Enter Text" ) |
|
if st.button('Predict'): |
|
processed_input = predict_sentiment_precep(text_input) |
|
prediction = backprop_model.predict(processed_input)[0] |
|
sentiment = "Positive" if prediction == 1 else "Negative" |
|
st.write(f"Predicted Sentiment: {sentiment}") |
|
|
|
else: |
|
st.subheader("Choose Model") |
|
model_choice = st.radio("Select Model", ["CNN"]) |
|
|
|
st.subheader("Image Input") |
|
image_input = st.file_uploader("Choose an image...", type="jpg") |
|
|
|
if image_input is not None: |
|
image = Image.open(image_input) |
|
st.image(image, caption="Uploaded Image.", use_column_width=True) |
|
|
|
|
|
preprocessed_image = preprocess_image(image) |
|
|
|
if st.button("Predict"): |
|
if model_choice == "CNN": |
|
make_prediction_cnn(image, image_model) |
|
|
|
|
|
|