from datasets import load_dataset, Dataset import os from datasets import load_dataset from datasets.utils.logging import disable_progress_bar from constants import column_names, RANKING_COLUMN, ORDERED_COLUMN_NAMES from utils_display import make_clickable_model import random disable_progress_bar() import math import json from tqdm import tqdm import numpy as np import os from eval_utils import * summary_file = "ZeroEval-main/result_dirs/zebra-grid.summary.json" result_dir = "ZeroEval-main/result_dirs/zebra-grid/" results_by_model = {} # Formats the columns def formatter(x): if type(x) is str: x = x else: x = round(x, 1) return x def post_processing(df, column_names, rank_column=RANKING_COLUMN, ordered_columns=ORDERED_COLUMN_NAMES, click_url=True): for col in df.columns: if col == "Model" and click_url: df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) else: df[col] = df[col].apply(formatter) # For numerical values df.rename(columns=column_names, inplace=True) list_columns = [col for col in ordered_columns if col in df.columns] df = df[list_columns] if rank_column in df.columns: df.sort_values(by=rank_column, inplace=True, ascending=False) return df def load_all_data(): global summary_file, result_dir with open(summary_file, "r") as f: model_summary = json.load(f) model_names = [model["Model"] for model in model_summary] for model_name in model_names: try: model_rename_map = { "Llama-3.1-405B-Inst-fp8@together": "Llama-3.1-405B-Instruct-Turbo", "Llama-3.1-405B-Inst@hyperbolic": "Meta-Llama-3.1-405B-Instruct@hyperbolic", "deepseek-v2-chat-0628": "deepseek-v2-chat", "deepseek-v2-coder-0724": "DeepSeek-Coder-V2-0724", "deepseek-v2-coder-0614": "deepseek-v2-coder", "gemma-2-9b-it": "gemma-2-9b-it@nvidia", "gemma-2-27b-it": "gemma-2-27b-it@nvidia" } if model_name in model_rename_map: model_name = model_rename_map[model_name] download_url = f"https://raw.githubusercontent.com/WildEval/ZeroEval/refs/heads/main/result_dirs/zebra-grid/{model_name}.json" output_file = os.path.join(result_dir, f"{model_name}.json") # mkdir -p result_dir if not exists os.makedirs(result_dir, exist_ok=True) if not os.path.exists(output_file): os.system(f"wget {download_url} -O {output_file}") print(f"Downloaded {model_name}.json") with open(output_file, "r") as f: print(f"Loading {output_file}") results_by_model[model_name] = json.load(f) except Exception as e: print(f"Error loading {model_name}: {e}") continue def get_random_item(model_name="random", size_H="random", size_W="random"): global summary_file, result_dir, results_by_model if results_by_model is None or len(results_by_model) == 0: load_all_data() if model_name == "random": model_name = random.choice(list(results_by_model.keys())) data = results_by_model[model_name] random.shuffle(data) selected_item = None prediction_table = None prediction_reasoning = None id_to_item = {} for item in data: id_to_item[item["id"]] = item if size_H == "random": size_H_choice = random.choice(list(range(2, 7))) else: size_H_choice = size_H if size_W == "random": size_W_choice = random.choice(list(range(2, 7))) else: size_W_choice = size_W ok_ids = [id for id in id_to_item if id_to_item[id]["size"].startswith(f"{size_H_choice}*{size_W_choice}")] for ok_id in ok_ids: item = id_to_item[ok_id] prediction_str = item["output"][0] prediction_json = extract_last_complete_json(prediction_str) if prediction_json is None or "solution" not in prediction_json: continue if "child" in item["puzzle"].lower() or "mother" in item["puzzle"].lower(): continue if "loves the spaghetti eater" in item["puzzle"].lower(): continue prediction_reasoning = prediction_json.get("reasoning", "") prediction_table = prediction_json["solution"] if prediction_table is not None and "House 1" in prediction_table: selected_item = item break if selected_item is None: # selected_item = random.choice(data) print("No item found!") return None explore_item = {} explore_item["id"] = selected_item["id"] explore_item["Model"] = model_name explore_item["size"] = selected_item["size"] explore_item["puzzle"] = selected_item["puzzle"] explore_item["solution"] = prediction_table explore_item["reasoning"] = prediction_reasoning headers = ["Houses"] + list(prediction_table["House 1"].keys()) rows = [] for row_id in range(len(prediction_table)): row = [row_id+1] for feature in headers[1:]: row.append(prediction_table[f"House {row_id+1}"][feature]) rows.append(row) table_md = tabulate(rows, headers=headers, tablefmt="github") explore_item["solution_table_md"] = table_md this_total_cells, this_correct_cells, truth_solution_table = eval_each_puzzle(explore_item["id"], prediction_table) # print(table_md) explore_item["correct_cells"] = this_correct_cells explore_item["total_cells"] = this_total_cells explore_item["truth_solution_table"] = tabulate(truth_solution_table["rows"], headers=truth_solution_table["header"], tablefmt="github") return explore_item if __name__ == "__main__": load_all_data() print("All data downloaded!") print(json.dumps(get_random_item(model_name="gemini-1.5-pro", size_H="2", size_W="5"), indent=2))