allandclive's picture
Update app.py
6bf44a2
raw
history blame
1.84 kB
import gradio as gr
import torch
import librosa
import json
from transformers import pipeline
from stitched_model import CombinedModel
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = CombinedModel("indonesian-nlp/wav2vec2-luganda", "Sunbird/sunbird-mul-en-mbart-merged", device=device)
def transcribe(audio_file_mic=None, audio_file_upload=None):
if audio_file_mic:
audio_file = audio_file_mic
elif audio_file_upload:
audio_file = audio_file_upload
else:
return "Please upload an audio file or record one"
# Load the audio file
speech, sample_rate = librosa.load(audio_file, sr=16000, mono=True)
# Split the audio into 30-second chunks
chunk_size = 30 * 16000
chunks = [speech[i:i + chunk_size] for i in range(0, len(speech), chunk_size)]
# Process each chunk and concatenate the results
transcriptions = []
translations = []
for chunk in chunks:
chunk = torch.tensor([chunk])
with torch.no_grad():
transcription, translation = model({"audio": chunk})
transcriptions.append(transcription)
translations.append(translation[0])
transcription = "".join(transcriptions)
translation = "".join(translations)
return transcription, translation
description = '''Luganda to English Speech Translation'''
iface = gr.Interface(fn=transcribe,
inputs=[
gr.Audio(source="microphone", type="filepath", label="Record Audio"),
gr.Audio(source="upload", type="filepath", label="Upload Audio")],
outputs=[gr.Textbox(label="Transcription"),
gr.Textbox(label="Translation")
],
description=description
)
iface.launch()