allandclive's picture
Update app.py
418caa5
raw
history blame
2.16 kB
import gradio as gr
import torch
import librosa
import json
from transformers import pipeline
from stitched_model import CombinedModel
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = CombinedModel("facebook/mms-1b-all", "Sunbird/sunbird-mul-en-mbart-merged", device=device)
def transcribe(audio_file_mic=None, audio_file_upload=None):
if audio_file_mic:
audio_file = audio_file_mic
elif audio_file_upload:
audio_file = audio_file_upload
else:
return "Please upload an audio file or record one"
# Make sure audio is 16kHz
speech, sample_rate = librosa.load(audio_file)
if sample_rate != 16000:
speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000)
speech = torch.tensor([speech])
with torch.no_grad():
transcription, translation = model({"audio": speech})
return transcription, translation[0]
description = '''Luganda,Runyankore,Lugbara,Acholi to English Speech Translation using MMS-ASR & Sunbird translation model'''
# Define example audio files
example_audio_files = [
"audio/luganda.mp3", # Replace with the path to your first example audio file
#"example_audio_files/example2.wav", # Replace with the path to your second example audio file
]
# Generate example inputs and outputs
examples = []
for audio_file_path in example_audio_files:
transcription, translation = transcribe(audio_file_upload=audio_file_path)
examples.append([
audio_file_path, # First element corresponds to the first input component (audio_file_upload)
None, # Second element corresponds to the second input component (audio_file_mic). Set to None for this example.
transcription,
translation
])
iface = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(source="microphone", type="filepath", label="Record Audio"),
gr.Audio(source="upload", type="filepath", label="Upload Audio")
],
outputs=[
gr.Textbox(label="Transcription"),
gr.Textbox(label="Translation")
],
description=description,
examples=examples # Add the examples here
)
iface.launch()