Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import random | |
import numpy as np | |
import torch | |
from torch import nn | |
from torchvision import transforms | |
from transformers import SegformerForSemanticSegmentation | |
# examples | |
os.system("wget -O 073.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/buenos_resultados/073.png") | |
os.system("wget -O 356.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/buenos_resultados/356.png") | |
os.system("wget -O 599.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/buenos_resultados/599.png") | |
os.system("wget -O 630.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/buenos_resultados/630.png") | |
os.system("wget -O 673.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/buenos_resultados/673.png") | |
os.system("wget -O 019.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/malos_resultados/019.png") | |
os.system("wget -O 261.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/malos_resultados/261.png") | |
os.system("wget -O 524.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/malos_resultados/524.png") | |
os.system("wget -O 716.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/malos_resultados/716.png") | |
os.system("wget -O 898.png https://huggingface.co./spaces/alkzar90/rock-glacier-segmentation/resolve/main/example_images/malos_resultados/898.png") | |
# model-setting | |
MODEL_PATH="./best_model_mixto/" | |
device = torch.device("cpu") | |
preprocessor = transforms.Compose([ | |
transforms.Resize(128), | |
transforms.ToTensor() | |
]) | |
model = SegformerForSemanticSegmentation.from_pretrained(MODEL_PATH) | |
model.eval() | |
# inference-functions | |
def upscale_logits(logit_outputs, size): | |
"""Escala los logits a (4W)x(4H) para recobrar dimensiones originales del input""" | |
return nn.functional.interpolate( | |
logit_outputs, | |
size=size, | |
mode="bilinear", | |
align_corners=False | |
) | |
def visualize_instance_seg_mask(mask): | |
"""Agrega colores RGB a cada una de las clases en la mask""" | |
image = np.zeros((mask.shape[0], mask.shape[1], 3)) | |
labels = np.unique(mask) | |
label2color = {label: (random.randint(0, 1), | |
random.randint(0, 255), | |
random.randint(0, 255)) for label in labels} | |
for i in range(image.shape[0]): | |
for j in range(image.shape[1]): | |
image[i, j, :] = label2color[mask[i, j]] | |
image = image / 255 | |
return image | |
def query_image(img): | |
"""Función para generar predicciones a la escala origina""" | |
inputs = preprocessor(img).unsqueeze(0) | |
with torch.no_grad(): | |
preds = model(inputs)["logits"] | |
preds_upscale = upscale_logits(preds, preds.shape[2]) | |
predict_label = torch.argmax(preds_upscale, dim=1).to(device) | |
result = predict_label[0,:,:].detach().cpu().numpy() | |
return visualize_instance_seg_mask(result) | |
# demo | |
demo = gr.Interface( | |
query_image, | |
inputs=[gr.Image(type="pil").style(full_width=True, height=256)], | |
outputs=[gr.Image().style(full_width=True, height=256)], | |
title="Skyguard: segmentador de glaciares de roca 🛰️ +️ 🛡️ ️", | |
description="Modelo de segmentación de imágenes para detectar glaciares de roca.<br> Se entrenó un modelo [nvidia/SegFormer](https://huggingface.co./nvidia/mit-b0) con _fine-tuning_ en el [rock-glacier-dataset](https://huggingface.co./datasets/alkzar90/rock-glacier-dataset)", | |
examples=[["073.png"], ["356.png"], ["599.png"], ["630.png"], ["673.png"], | |
["019.png"], ["261.png"], ["524.png"], ["716.png"], ["898.png"]], | |
cache_examples=False | |
) | |
demo.launch() | |