import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"alimrb/eff24" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def make_inference(question, answer): batch = tokenizer( f"### Question:\n{question}\n\n### Answer:", return_tensors="pt", ) # Move batch to the same device as the model batch = {k: v.to(model.device) for k, v in batch.items()} with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) if __name__ == "__main__": # Create a Gradio interface import gradio as gr gr.Interface( make_inference, [ gr.Textbox(lines=2, label="Question"), ], gr.Textbox(label="Answer"), title="EFF24", description="EFF24 is a generative model that generates Answers for Questions." ).launch()