import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Import the specific Gradio components from gradio import Textbox, Interface peft_model_id = f"alimrb/eff24" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def make_inference(product_name, product_description): batch = tokenizer( f"### Product and Description:\n{product_name}: {product_description}\n\n### Ad:", return_tensors="pt", ) with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) if __name__ == "__main__": # Create a Gradio interface Interface( make_inference, [ Textbox(lines=2, label="Product Name"), Textbox(lines=5, label="Product Description"), ], Textbox(label="Ad"), title="EFF24", description="EFF24 is a generative model that generates ads for products." ).launch()